To prevent cardiovascular disease, medication should not be a substitute for improved lifestyle

To prevent cardiovascular disease, medication should not be a substitute for improved lifestyle

OVERVIEW

  • Cardiovascular disease dramatically increases the risk of developing serious complications from COVID-19, again highlighting the importance of preventing these diseases in order to live long and healthy lives.
  • And it is possible! Numerous studies clearly show that more than 80% of cardiovascular diseases can be prevented by simply adopting 5 lifestyle habits (not smoking, maintaining a normal weight, eating a lot of vegetables, exercising regularly, and drinking alcohol moderately).

The current COVID-19 pandemic has exposed two major vulnerabilities in our society. The first is, of course, the fragility of our health care system, in particular everything related to the care of the elderly with a loss of autonomy. The pandemic has highlighted serious deficiencies in the way this care is delivered in several facilities, which has directly contributed to the high number of elderly people who have died from the disease. Hopefully, this deplorable situation will have a positive impact on the ways of treating this population in the future.

A second vulnerability highlighted by the pandemic, but much less talked about, is that COVID-19 preferentially affects people who present pre-existing conditions at the time of infection, in particular cardiovascular disease, obesity and type 2 diabetes. These comorbidities have a devastating impact on the course of the disease, with increases in the death rate of 5 to 10 times compared to people without pre-existing conditions. In other words, not only does poor metabolic health have a disastrous impact on healthy life expectancy, it is also a significant risk factor for complications from infectious diseases such as COVID-19. We are therefore not as helpless as we might think in the face of infectious agents such as the SARS-CoV-2 coronavirus: by adopting a healthy lifestyle that prevents the development of chronic diseases and their complications, we simultaneously greatly improve the probability of effectively fighting infection with this type of virus.

Preventing cardiovascular disease
Cardiovascular disease is one of the main comorbidities associated with severe forms of COVID-19, so prevention of these diseases can therefore greatly reduce the impact of this infectious disease on mortality. It is now well established that high blood pressure and high blood cholesterol are two important risk factors for cardiovascular disease. As a result, the standard medical approach to preventing these diseases is usually to lower blood pressure and blood cholesterol levels with the help of drugs, such as antihypertensive drugs and cholesterol-lowering drugs (statins). These medications are particularly important in secondary prevention, i.e. to reduce the risk of heart attack in patients with a history of cardiovascular disease, but they are also very frequently used in primary prevention, to reduce the risk of cardiovascular events in the general population.

The drugs actually manage to normalize cholesterol and blood pressure in the majority of patients, which can lead people to believe that the situation is under control and that they no longer need to “pay attention” to what they eat or be physically active on a regular basis. This false sense of security associated with taking medication is well illustrated by the results of a recent study, conducted among 41,225 Finns aged 40 and over. By examining the lifestyle of this cohort, the researchers observed that people who started medication with statins or antihypertensive drugs gained more weight over the next 13 years, an excess weight associated with an 82% increased risk of obesity compared to people who did not take medication. At the same time, people on medication reported a slight decrease in their level of daily physical activity, with an increased risk of physical inactivity of 8%.

These findings are consistent with previous studies showing that statin users eat more calories, have a higher body mass index than those who do not take this class of drugs, and do less physical activity (possibly due to the negative impact of statins on muscles in some people). My personal clinical experience points in the same direction; I have lost count of the occasions when patients tell me that they no longer have to worry about what they eat or exercise regularly because their levels of LDL cholesterol have become normal since they began taking a statin. These patients somehow feel “protected” by the medication and mistakenly believe that they are no longer at risk of developing cardiovascular disease. This is unfortunately not the case: maintaining normal cholesterol levels is, of course, important, but other factors such as smoking, being overweight, sedentary lifestyle, and family history also play a role in the risk of cardiovascular disease. Several studies have shown that between one third and one half of heart attacks occur in people with LDL-cholesterol levels considered normal. The same goes for hypertension as patients treated with antihypertensive drugs are still 2.5 times more likely to have a heart attack than people who are naturally normotensive (whose blood pressure is normal without any pharmacological treatment) and who have the same blood pressure.

In other words, although antihypertensive and cholesterol-lowering drugs are very useful, especially for patients at high risk of cardiovascular events, one must be aware of their limitations and avoid seeing them as the only way to reduce the risk of cardiovascular events.

Superiority of lifestyle
In terms of prevention, much more can be done by addressing the root causes of cardiovascular disease, which in the vast majority of cases are directly linked to lifestyle. Indeed, a very large number of studies have clearly shown that making only five lifestyle changes can very significantly reduce the risk of developing these diseases (see Table below).

The effectiveness of these lifestyle habits in preventing myocardial infarction is quite remarkable, with an absolute risk drop to around 85% (Figure 1). This protection is seen both in people with adequate cholesterol levels and normal blood pressure and in those who are at higher risk for cardiovascular disease due to high cholesterol and hypertension.

Figure 1. Decreased incidence of myocardial infarction in men combining one or more protective factors related to lifestyle. The comparison of the incidences of infarction was carried out in men who did not have cholesterol or blood pressure abnormalities (upper figure, in blue) and in men with high cholesterol levels and hypertension (lower figure, in orange). Note the drastic drop in the incidence of heart attacks in men who adopted all 5 protective lifestyle factors, even in those who were hypertensive and hypercholesterolemic. Adapted from Åkesson (2014).

Even people who have had a heart attack in the past and are being treated with medication can benefit from a healthy lifestyle. For example, a study conducted by Canadian cardiologist Salim Yusuf’s group showed that patients who modify their diet and adhere to a regular physical activity program after a heart attack have their risk of heart attack, stroke and mortality reduced by half compared to those who do not change their habits (Figure 2). Since all of these patients were treated with all of the usual medications (beta blockers, statins, aspirin, etc.), these results illustrate how lifestyle can influence the risk of recurrence.

Figure 2. Effect of diet and exercise on the risk of heart attack, stroke, and death in patients with previous coronary artery disease. Adapted from Chow et al. (2010).

In short, more than three quarters of cardiovascular diseases can be prevented by adopting a healthy lifestyle, a protection that far exceeds that provided by drugs. These medications must therefore be seen as supplements and not substitutes for lifestyle. The development of atherosclerosis is a phenomenon of great complexity, which involves a large number of distinct phenomena (especially chronic inflammation), and no drug, however effective, will ever offer protection comparable to that provided by a healthy diet, regular physical activity, and maintenance of a normal body weight.

Hydroxychloroquine and COVID-19: A potentially harmful effect on the heart

Hydroxychloroquine and COVID-19: A potentially harmful effect on the heart

Updated June 8, 2020

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 coronavirus strain that primarily, but not exclusively, affects the respiratory system. While in the majority of infected people the symptoms of the disease are relatively mild or moderate (cough, fever, dyspnea or difficulty breathing, digestive disorders, temporary loss of taste and smell, hives, vascular lesions on the fingertips and toes), they may worsen in some people who have one or more risk factors (diabetes, hypertension, obesity, cardiovascular disease, advanced age) into acute respiratory distress syndrome that requires hospitalization in an intensive care unit and can lead to death.

There is no vaccine or effective drug available to reduce the mortality associated with COVID-19. The use of an antiviral drug, remdesivir, which was urgently approved by the FDA on May 1, 2020, reduces the number of days in hospital in people with COVID-19, but does not significantly reduce mortality. As of May 15, 2020, more than 1,500 studies on various aspects of COVID-19 have been registered on ClinicalTrials.gov, including more than 885 intervention studies and randomized controlled studies, with 176 on the use of hydroxychloroquine.

Hydroxychloroquine
One of the first candidates tested for treating COVID-19 was hydroxychloroquine, a drug used for its anti-inflammatory properties in the treatment of rheumatoid arthritis and systemic lupus erythematosus. Prior to the current COVID-19 pandemic, it was already known that chloroquine and its derivatives, including hydroxychloroquine, have non-specific antiviral activity against several types of enveloped viruses (HIV, hepatitis C, dengue, influenza, Ebola, SARS, MERS) in vitro. Two recent studies (see here and here) have shown that hydroxychloroquine also inhibits infection with the SARS-CoV-2 virus in vitro, i.e. in cultured epithelial cells. Hydroxychloroquine, which has a better safety profile than chloroquine, has been shown to be a more potent SARS-CoV-2 inhibitor in vitro.

The results obtained in vitro do not necessarily imply that chloroquine and its derivatives have antiviral activity in humans. Indeed, studies have shown that in vivo chloroquine and/or hydroxychloroquine have no effect on viral replication or increase viral replication and the severity of illness caused by infection by influenza, dengue, Simliki forest virus, encephalomyocarditis virus, Nipah and Hendra viruses, Chikungunya virus, and Ebola virus (references here).

Initial results from studies on the use of hydroxychloroquine to treat COVID-19 are unclear. Chinese researchers have reported treating over 100 patients with beneficial effects, but have not released any data. French microbiologist Didier Raoult and his collaborators published two articles (see here and here) on the use of hydroxychloroquine (in combination with the antibiotic azithromycin) for the treatment of COVID-19, in which they concluded that this drug lowers viral load in nasal swabs. However, these studies were not randomized and they do not report essential clinical data, such as the number of deaths among participants. In addition, two other French groups (see here and here) report having found no evidence of antiviral activity of hydroxychloroquine/azithromycin or of clinical benefit in hospitalized patients with a severe form of COVID-19.

In an observational study conducted in New York City hospitals, hydroxychloroquine was administered to 811 patients out of a total of 1376 patients, with a follow-up lasting an average of 22.5 days after admission to the hospital. Analysis of the results indicates that among this large number of patients admitted to hospital with a severe form of COVID-19, the risk of having to be intubated or dying was not significantly higher or lower in patients who received hydroxychloroquine than in those who did not. The authors conclude that the results obtained do not support the use of hydroxychloroquine in the current context, except in randomized controlled trials, which remain the best way to establish the efficacy of a therapeutic intervention.

Cardiovascular risk: Prolongation of the QT interval
Although hydroxychloroquine and azithromycin are well-tolerated drugs, both can cause prolongation of the QT segment on the electrocardiogram (figure below). For this reason, cardiologists are concerned about the use of these two drugs in a growing number of clinical trials for the treatment of COVID-19 (see here, here, here and here). It should be noted that the prolongation of the corrected QT interval (QTc) is a recognized marker of an increased risk of fatal arrhythmias.

Figure. Normal and abnormal (long) QT interval on the electrocardiogram.

Hospital researchers in the United States assessed the risk of QTc prolongation in 90 patients who received hydroxychloroquine, 53 of whom were concomitantly given the antibiotic azithromycin. The most common comorbidities among these patients were hypertension (53%) and type 2 diabetes (29%). The use of hydroxychloroquine alone or in combination with azithromycin was associated with QTc prolongation. Patients who received the two drugs in combination had significantly greater QTc prolongation than those who received hydroxychloroquine alone. Seven patients (19%) who received hydroxychloroquine monotherapy saw their QTc increase to 500 milliseconds (ms) or more, and three patients (8%) saw their QTc increase by 60 ms or more. Among the patients who received hydroxychloroquine and azithromycin in combination, 11 (21%) saw their QTc increase to 500 milliseconds (ms) or more, and 7 (13%) saw their QTc increase by 60 ms or more. Treatment with hydroxychloroquine had to be stopped promptly in 10 patients, due to iatrogenic drug events (adverse reactions), including nausea, hypoglycemia and 1 case of torsades de pointes. The authors conclude that physicians treating their patients with COVID-19 should carefully weigh the risks and benefits of treatment with hydroxychloroquine and azithromycin, and monitor QTc closely if patients are receiving these drugs.

French doctors have also published the results of a study on the effects of hydroxychloroquine treatment on the QT interval in 40 patients with COVID-19. Eighteen patients were treated with hydroxychloroquine (HCQ) and 22 received hydroxychloroquine in combination with the antibiotic azithromycin (AZM). An increase in the QTc interval was observed in 37 patients (93%) after treatment with antiviral therapy (HCQ alone or HCQ + AZM). QTc prolongation was observed in 14 patients (36%), including 7 with a QTc ≥ 500 milliseconds, 2 to 5 days after the start of antiviral therapy. Of these 7 patients, 6 had been treated with HCQ + AZM and one patient with hydroxychloroquine only, a significant difference. The authors conclude that treatment with hydroxychloroquine, particularly in combination with azithromycin, is of concern and should not be generalized when patients with COVID-19 cannot be adequately monitored (continuous monitoring of the QTc interval, daily electrocardiogram, laboratory tests).

Update June 8, 2020
A randomized, placebo-controlled study suggests that hydroxychloroquine is not effective in preventing the development of COVID-19 in people who have been exposed to the SARS-CoV-2 virus. The study, conducted in the United States and Canada, was published in the New England Journal of Medicine. Of 821 participants, 107 developed COVID-19 during the 14-day follow-up. Among people who received hydroxychloroquine less than four days after being exposed, 11.8% developed the disease compared to 14.3% in the group who received the placebo, a non-significant difference (P = 0.35). Side effects (nausea, abdominal discomfort) were more common in participants who received hydroxychloroquine than in those who received a placebo (40% vs. 17%), but no serious side effects, including cardiac arrhythmia, were reported. Clinical trials are underway to verify whether hydroxychloroquine can be effective in pre-exposure prophylaxis.

The importance of maintaining normal cholesterol levels, even at a young age

The importance of maintaining normal cholesterol levels, even at a young age

OVERVIEW

  • A study of 400,000 middle-aged people (average age 51) shows that above-normal cholesterol levels are associated with a significant increase in the risk of cardiovascular disease in the decades that follow.
  • This risk is particularly high in people who were under the age of 45 at the start of the study, suggesting that prolonged exposure to excess cholesterol plays a major role in increasing the risk of cardiovascular disease.
  • Reducing cholesterol levels as early as possible, from early adulthood, through lifestyle changes (diet, exercise) can therefore limit the long-term exposure of blood vessels to atherogenic particles and thus reduce the cardiovascular events during aging.

It is now well established that high levels of cholesterol in the bloodstream promote the development of atherosclerosis and thereby increase the risk of cardiovascular events such as myocardial infarction and stroke. It is for this reason that the measurement of cholesterol has been part of the basic blood test for more than 30 years and that a deviation from normal values is generally considered a risk factor for cardiovascular disease.

Remember that cholesterol is insoluble in water and must be combined with lipoproteins to circulate in the blood. Routinely, the way to determine cholesterol levels is to measure all of these lipoproteins (what is called total cholesterol) and then distinguish two main types:

  1. HDL cholesterol, colloquially known as “good cholesterol” because it is involved in the elimination of cholesterol and therefore has a positive effect on cardiovascular health;
  2. LDL cholesterol, the “bad” cholesterol because of its involvement in the formation of atherosclerotic plaques that increase the risk of heart attack and stroke.

LDL cholesterol is difficult to measure directly and its concentration is rather calculated from the values determined for total cholesterol, HDL cholesterol and triglycerides using a mathematical formula:

[LDL cholesterol] = [Total cholesterol] – [HDL cholesterol] – [Triglycerides] / 2.2

However, this method has its limits, among other things because a large proportion of cholesterol can be transported by other types of lipoproteins and therefore does not appear in the calculation. However, it is very easy to measure all of these lipoproteins by simply subtracting HDL cholesterol from total cholesterol:

[Total cholesterol] – [HDL cholesterol] = [Non-HDL cholesterol]

This calculation makes it possible to obtain the concentration of what is called “non-HDL” cholesterol, i.e. all of the atherogenic lipoproteins [VLDL, IDL, LDL and Lp(a)] that are deposited at the level of the wall of the arteries and form atheromatous plaques that significantly increase the risk of cardiovascular problems. Although clinicians are more familiar with LDL cholesterol measurement, cardiology associations, including the Canadian Cardiovascular Society, now recommend that non-HDL cholesterol also be used as an alternative marker for risk assessment in adults.

Short-term risks
The decision to initiate cholesterol-lowering therapy depends on the patient’s risk of experiencing a cardiovascular event in the next 10 years. To estimate this risk, clinicians use what is called a “risk score” (the Framingham risk score, for example), a calculation based primarily on the patient’s age, history of cardiovascular disease, family history and certain clinical values ​​(blood pressure, blood sugar, cholesterol). For people who are at high risk of cardiovascular disease, especially those who have suffered a coronary event, there is no hesitation: all patients must be taken care of quickly, regardless of LDL or non-HDL cholesterol levels. Several clinical studies have shown that in this population, the main class of cholesterol-lowering drugs (statins) helps prevent recurrences and mortality, with an absolute risk reduction of around 4%. As a result, these drugs are now part of the standard therapeutic arsenal to treat anyone who has survived a coronary event or who has stable coronary heart disease.

The same goes for people with familial hypercholesterolemia (HF), a genetic disorder that exposes individuals to high levels of LDL cholesterol from birth and to a high risk for cardiovascular events before they even turn 40. A study has just recently shown that HF children who were treated with statins at an early age had a much lower incidence of cardiovascular events in adulthood (1% vs. 26%) than their parents who had not been treated early with statins.

Long-term risks
However, the decision to treat high cholesterol is much more difficult for people who do not have these risk factors. Indeed, when the risk of cardiovascular events over the next 10 years is low or moderate, the guidelines tolerate much higher LDL and non-HDL cholesterol levels than in people at risk: for example, when we usually try to keep LDL cholesterol below 2 mmol/L for people at high risk, a threshold twice as high (5 mmol/L) is proposed before treating people at low risk (Table 1). In this population, there is therefore a great deal of room for maneuver in deciding whether or not to start pharmacological treatment or to fundamentally change lifestyle habits (diet, exercise) to normalize these cholesterol levels.

Table 1. Canadian Cardiovascular Society guidelines for dyslipidemia treatment thresholds. *FRS = Framingham Risk Score. Adapted from Anderson et al. (2016).

 

This decision is particularly difficult for young adults, who are generally considered to be at low risk of cardiovascular events over the next 10 years (age is one of the main factors used for risk assessment and therefore the younger you are, the lower the risk). On the one hand, a young person, say in their early forties, who has above-normal LDL or non-HDL cholesterol, but without exceeding the recommended thresholds and without presenting other risk factors, probably does not have a major risk of being affected by a short-term cardiovascular event. But given their young age, they may be exposed to this excess cholesterol for many years and their risk of cardiovascular disease may become higher than average once they turn 70 or 80.

Recent studies indicate that it would be wrong to overlook this long-term negative impact of higher-than-normal non-HDL cholesterol. For example, it has been shown that an increase in non-HDL cholesterol at a young age (before age 40) remains above normal for the following decades and increases the risk of cardiovascular disease by almost 4 times. Another study that followed for 25 years a young population (average age of 42 years) who presented a low risk of cardiovascular disease at 10 years (1.3%) obtained similar results: compared to people with normal non-HDL cholesterol (3.3 mmol/L), those with non-HDL cholesterol above 4 mmol/L had an 80% increased risk of cardiovascular mortality.   As shown in Table 1, these non-HDL cholesterol values are below the thresholds considered to initiate treatment in people at low risk, suggesting that hypercholesterolemia that develops at a young age, even if it is mild and not threatening in the short term, may nevertheless have longer-term adverse effects.

This concept has just been confirmed by a very large study involving nearly 400,000 middle-aged people (average age 51) who were followed for a median period of 14 years (maximum 43 years). The results show a significant increase as a function of time in the risk of cardiovascular disease based on non-HDL cholesterol levels: compared to the low category (<2.6 mmol/L), the risk increases by almost 4 times for non-HDL cholesterol ≥ 5.7 mmol/L, as much in women (increase from 8% to 34%) as in men (increase from 13% to 44%) (Figure 1).

Figure 1. Increased incidence of cardiovascular disease based on non-HDL cholesterol levels. From Brunner et al. (2019).

The largest increase in risk associated with higher non-HDL cholesterol levels was observed in people who were under 45 years of age at the beginning of the study (risk ratio of 4.3 in women and 4.6 in men for non-HDL cholesterol ≥5.7 mmol/L vs. the reference value of 2.6 mmol/L) (Figure 2). In older people (60 years or more), these risk ratios are much lower (1.4 in women and 1.8 in men), confirming that it is prolonged exposure (for several decades) to high levels of non-HDL cholesterol that plays a major role in increasing the risk of cardiovascular disease.

Figure 2. Age-specific and sex-specific association of non-HDL cholesterol and cardiovascular disease. From Brunner et al. (2019).

According to the authors, there would therefore be great benefits in reducing non-HDL cholesterol levels as soon as possible to limit the long-term exposure of blood vessels to atherogenic particles and thus reduce the risk of cardiovascular events. An estimate based on the results obtained indicates that in people 45 years of age and under who have above-normal non-HDL cholesterol levels (3.7–4.8 mmol/L) and other risk factors (e.g. hypertension), a 50% reduction in this type of cholesterol would reduce the risk of cardiovascular disease at age 75 from 16% to 4% in women and from 29% to 6% in men. These significant reductions in long-term risk therefore add a new dimension to the prevention of cardiovascular disease: it is no longer only the presence of high cholesterol levels which must be considered, but also the duration of exposure to excess cholesterol.

What to do if your cholesterol is high
If your short-term risk of cardiovascular accident is high, for example, because you suffer from familial hypercholesterolemia or you combine several risk factors (heredity of early coronary artery disease, hypertension, diabetes, abdominal obesity), it is certain that your doctor will insist on prescribing a statin if your cholesterol is above normal.

For people who do not have these risk factors, the approach that is generally recommended is to modify lifestyle habits, particularly in terms of diet and physical activity. Several of these modifications have rapidly measurable impacts on non-HDL cholesterol levels: weight loss for obese or overweight people, replacing saturated fat with sources of monounsaturated fat (olive oil, for example) and omega-3 polyunsaturated fats (fatty fish, nuts and seeds), an increase in the consumption of soluble fibres, and the adoption of a regular physical activity program. This roughly corresponds to the Mediterranean diet, a diet that has repeatedly been associated with a decreased risk of several chronic diseases, particularly cardiovascular disease.

The advantage of adopting these lifestyle habits is that not only do they help normalize cholesterol levels, but they also have several other beneficial effects on cardiovascular health and health in general. Despite their well-documented clinical utility, randomized clinical studies indicate that statins fail to completely reduce the risk of cardiovascular events, both in primary and secondary prevention. This is not surprising, since atherosclerosis is a multifactorial disease, which involves several phenomena other than cholesterol (chronic inflammation in particular). This complexity means that no single drug can prevent cardiovascular disease alone. And it is only by adopting a comprehensive approach based on a healthy lifestyle that we can make significant progress in preventing these diseases.