Are low-carbohydrate diets really the best way to lose weight?

Are low-carbohydrate diets really the best way to lose weight?

Updated on September 11, 2018

The dramatic increase in population body weight over the past 40 years is becoming the major public health problem of our generation. Once a very rare phenomenon, the prevalence of obesity is rising sharply in most countries worldwide, reaching 5% among children (108 million) and 12% among adults (604 million) in 2015. In Canada, the situation is even worse, with no less than 62% of the adult population being overweight, including 27% who are obese. Moreover, this is not improving, as we are also among the top countries with the highest rates of overweight children and adolescents, with 15% of young boys and 10% of young girls who are obese.

These statistics are truly alarming, as overweight, and more specifically obesity, is an important risk factor for a wide range of chronic diseases, including cardiovascular disease, type 2 diabetes, at least 13 types of cancer, and various musculoskeletal disorders. The negative impacts of having an overweight population are already beginning to appear: in the United States, where the prevalence of obesity is one of the highest in the world, a report by the Center for Disease Control and Prevention (CDC) recently showed a decrease in life expectancy due in part to the effects of obesity on cardiovascular disease. In other words, the dramatic increase in the number of overweight people is counteracting the benefits of decreased tobacco use in recent years, with disastrous consequences for both the population’s life expectancy and quality.

Losing weight is hard
Overweight is basically the result of an imbalance caused by the consumption of calories in excess of the body’s energy needs. In theory, the treatment of obesity is therefore relatively simple: it is a matter of restoring a balance between caloric intake and expenditure, for example by eating less and moving more, which causes an energy deficit that leads over time to the dissipation of excess calories accumulated in the form of fat, and, therefore, to weight loss.

In reality, losing weight, and especially maintaining weight loss in the long term, is an extremely difficult task that the majority of overweight people are unable to successfully achieve. For example, in a randomized study on the impact of four popular diets (Atkins, Zone, Weight Watchers and Ornish), researchers noted that the weight loss achieved by each of these diets was relatively modest (in the order of 2-3 kg), a failure that can be explained in large part by the very high attrition rate among participants. Greater weight loss, in the order of 20 kg, can be achieved in the short term with even more severely calorie-deficient diets, but again, adherence to these extreme diets is very low, and weight loss is quickly followed by weight gain. This is a major problem, as obesity is a chronic condition that requires sustained weight loss over a long period of time to significantly reduce the risk of developing the range of problems resulting from being overweight.

This difficulty in losing weight is due to the fact that caloric intake and caloric expenditure are interrelated phenomena that exert a mutual influence in order to maintain a stable body weight. In practical terms, this means that changes in energy balance, whether due to decreased caloric intake and/or increased physical activity levels, are countered by a series of physiological adaptations that resist weight loss, for example by decreasing basal metabolic rate. As a result, even if a person manages to create an energy deficit by eating less or being more active, it is usually offset by a corresponding decrease in the energy expended by the body or by an increase in appetite to compensate for missing calories. The difficulty in losing weight is therefore not due to a lack of willpower, as still too many people think, but rather a consequence of our metabolism’s fierce resistance to anything that is likely to cause weight loss.

Low-carbohydrate diets
In recent years, it has been proposed that low-carbohydrate but high-fat diets (“low-carb, high-fat”, or LCHF) may be a solution to bypass the body’s “defense” mechanisms and increase weight loss (see box for a summary of the scientific aspects of this approach). Since carbohydrates cause a marked increase in insulin levels, which is the hormone involved in the conservation of energy stored in the form of fat, it is proposed that a low-carbohydrate diet could reduce insulin levels, thus allowing the body to mobilize fat stored in adipose tissue and to use it as a source of energy. According to the model, this increased use of fat would result in an increase in metabolism (around 500 kcal/day), and should therefore allow significant weight loss.

In Canada, the food guide recommends consuming about 300 g of carbohydrates per day, which corresponds to 1,200 calories, or 60% of the total calorie consumption of an average adult (2,000 calories). In a low-carbohydrate diet, this proportion is around 20% of total calories (100 g of carbohydrates) and can even decrease to 5% of calories (20 g of carbohydrates, equivalent to a single slice of bread) in ketogenic diets.

The principle behind low-carb diets is that calories from carbohydrates favour more accumulation of excess weight than calories from fat. In other words, it is not so much the quantity, but especially the type of calories consumed that are important for weight loss. This hypothesis is based on two well-documented effects of insulin on metabolism:

1) In carbohydrate-rich diets, the insulin secreted by the pancreas allows fat cells to capture the sugars released into the blood and to turn them into fat for future use.

2) Simultaneously, insulin blocks the use of calories accumulated in fat tissue, thus preventing weight loss. These actions of insulin ensure that fat tissue not only accumulates excess calories, but that these calories cannot even be used to support the body’s energy needs.

In other words, even if there is a surplus of stored energy, the body is in famine mode! In response to this deficiency, it reduces its basal metabolic rate to save energy (which helps prevent the use of excess calories) and simultaneously increases appetite to obtain the calories needed to maintain these functions. There is therefore a vicious circle in which excess carbohydrates lead to overweight, and overweight leads to an increase in food consumption. This model would explain the increase in body weight observed in a large number of people with diabetes who are treated with insulin.

 

The impact of low-carb diets on body weight has been the subject of a very large number of randomized clinical studies over the past two decades. In general, these studies show that in the short term (3 to 6 months), obese or morbidly obese people experience significant weight loss on these diets compared to traditional low-calorie diets (low-fat diets, for example). In most cases, however, weight loss is temporary and decreases considerably over time: the difference in kilos lost 2 years into various diets is minimal and insufficient to have a significant clinical impact (Figure 1).

Figure 1. Comparison of the weight loss achieved with low-carbohydrate or low-fat diets over a 2-year period. Adapted from Foster (2010).

Several meta-analyses of randomized clinical trials comparing weight loss for low-fat and low-carb diets confirm the slight advantage of low-carb diets, but show that additional weight loss from these diets is relatively modest, at around 1-2 kg (Table 1).

Table 1. Summary of meta-analyses comparing weight loss obtained with low-carbohydrate (low-carb) or low-fat diets.

Meta-analysesNumber of randomized studies includedTotal number of participantsDiet with highest fat lossAdditional weight loss (kg)
Nordmann et al. (2006)5447Low-carb1.0
Hession et al. (2009)71222Low-carb1.05
Bueno et al. (2013)131415Low-carb0.91
Tobias et al. (2015)182736Low-carb1.15
Sackner-Bernstein et al. (2015)171797Low-carb2.04
Mansoor et al. (2016)111369Low-carb2.17
Meng et al. (2017)8734Low-carb0.94

To explain these disappointing results, it should first be mentioned that the theory on which low-carb diets are based, i.e., a decrease in insulin increases the body’s energy expenditure and fat metabolism, seems inaccurate. When researchers rigorously measured energy expenditure in response to diets containing either low amounts of fat or carbohydrates, they observed that the increase in metabolism from low-carb diets is very low and has no major impact on weight loss. In fact, the opposite is true: for equal calories, weight loss is slightly higher for people on a low-fat diet compared to a low-carbohydrate diet.

Hence, there does not seem to be any major advantage to preferentially restricting carbohydrate intake to promote weight loss. Although sometimes significant, the weight loss that occurs in the first few months of these diets tends to diminish over time, becoming similar to results obtained for low-calorie diets. The most important factor is limiting total calories, whether from carbohydrates or fat. In fact, studies show that people who diligently follow low-calorie diets for at least 2 years manage to achieve significant weight loss, whether or not these diets are rich in carbohydrates, fats or proteins.

Impact on cardiovascular health
Several studies have examined the impact of low-carb diets on cardiovascular risk factors and, again, the results do not seem to show significant advantages over conventional low-calorie diets. In the short term, studies indicate that low-carb diets increase HDL cholesterol levels and decrease triglycerides, which is positive, but simultaneously increase LDL cholesterol levels (due to a higher intake of saturated fat), which is negative. However, since these effects disappear over time, they likely do not have major clinical implications. It should be noted that the increase in HDL cholesterol levels observed in response to low-carb diets is maintained over the longer term and remains about twice as high as for people on a low-fat diet. An increase in HDL levels is generally considered beneficial to cardiovascular health, but its real impact in a context where saturated fat intake is high (as with low-carb diets) is yet to be established. Overall, it can be argued that weight loss is the most important factor in improving the cardiovascular health of people who are obese, regardless of the diet used.

Inter-individual variations
It is important to note that the results of the studies mentioned here indicate the average weight loss observed in a population on a given weight loss diet. However, in each of these groups, there are major differences in the response to these diets, with some people losing a lot of weight, others losing less, and some even gaining weight. This phenomenon is observed for all diets, whether they are low in carbohydrates or fat (Figure 2).


Figure 2. Distribution of weight changes for each participant in a study comparing the effectiveness of low-carbohydrate (Atkins) and low-fat (Ornish) diets. Adapted from Gardner (2012).

All of the factors responsible for these significant variations are not yet known, but they likely reflect the heterogeneity of the human metabolism and its very different responses to food. For example, it is known that postprandial glucose responses (a risk factor for cardiovascular disease and premature death) vary considerably from person to person, even when they eat exactly the same meal. A host of factors have been proposed to explain this phenomenon (sleep-wake cycle, mealtime, level of physical activity, composition of the intestinal microbiome), but the degree of insulin sensitivity is certainly among the most important. Several studies have reported that insulin-resistant (diabetic and prediabetic) people lose more weight on a low-carbohydrate diet than on a low-fat diet, whereas, conversely, low-fat diets may work better for people with greater insulin sensitivity. The advantages of a low-carb diet in this population do not seem to be limited to weight loss: a recent study showed that compared to a low-fat diet, a low-carb diet with mainly unsaturated fat resulted in a greater improvement in lipid profile and blood sugar levels, and a reduction in medication in obese and diabetic patients, despite similar weight loss. Low-carbohydrate diets may therefore be a promising approach for the optimal treatment of type 2 diabetes.

It is also possible that a low-carbohydrate diet may have additional positive effects. For example, it has been suggested that the high consumption of carbohydrate-rich foods preferentially increases the accumulation of fat in the viscera and liver, which in turn increases the risk of cardiovascular disease and type 2 diabetes. It has also been suggested that a very low-carbohydrate diet could reduce appetite by increasing blood ketone levels. Low-carb diets are also often associated with higher protein consumption, which could contribute to an increased sense of satiety, thus lowering total caloric intake.

In short, there is no universal solution to weight loss, and low-carbohydrate diets can be an interesting tool to help some people lose weight. One advantage of these diets is the elimination of sources of simple sugars (sweets, soft drinks, foods made with refined flour), which do not provide any useful benefits for health and are known to promote overweight and the development of several chronic diseases. However, a major disadvantage is that these diets limit the intake of certain plant-based foods known to have very positive impacts on the prevention of cardiovascular disease and overall health, such as fruits, legumes and whole grain products.

Another negative aspect of low-carb diets is that they often recommend a high intake of saturated animal fats (red meat, cured meats, dairy products), which increase LDL cholesterol levels, an important risk factor for cardiovascular disease. Recent results indicate that this type of diet can be harmful to health: for example, one study showed that people whose carbohydrate intake was less than 40% of total calories had a 20% higher risk of premature death than those whose carbohydrate intake was 50-55% of total calories. However, this increased risk is only observed in people who replace carbohydrates with animal proteins and fats; when carbohydrates are replaced by foods of plant origin, on the contrary, there is a decrease (18%) in the risk of premature death.

These observations are consistent with several studies showing that the substitution of saturated fat with unsaturated fat is associated with a marked decrease in the risk of cardiovascular events and mortality (Figure 3). People who wish to adopt a low-carb approach are therefore well advised to limit the consumption of saturated fats and instead turn to polyunsaturated fats (avocados, fatty fish, nuts, flaxseed, etc.) as a primary source, due to the well-documented cardioprotective effect of these fats.

Figure 3. Variation in the risk of premature mortality according to the proportion of different types of fat in the diet. Adapted from Wang et al. JAMA Intern. Med. 2016; 176: 1134-1145.  

 

 

The Blue Zones: Areas where people are living better and longer

The Blue Zones: Areas where people are living better and longer

Updated on March 15, 2019

Life expectancy at birth in Canada in 2015 was 84.1 years for women and 80.2 years for men. It has been steadily rising for half a century: in 1960 life expectancy was 74.1 years for women and 71.1 for men. However, it is far from the exceptional longevity observed in specific areas of our planet where we find a large proportion of centenarians. These regions, named “Blue Zones”, have been identified by two demographers, Gianni Pes and Michel Poulain, and journalist Dan Buettner, author of the article The Secrets of Long Life in National Geographic magazine and the book The Blue Zones.

The five Blue Zones identified in the world.


Sardinia, Italy
By studying the longevity of the inhabitants of Sardinia, an Italian island in the Mediterranean Sea, the demographers Gianni Pes and Michel Poulain and their collaborators have located the areas where morecentenarianslive. These longevity hot spots, or Blue Zones (the researchers initially used a blue marker to delineate these areas on a map), are located in a mountainous area of ​​the island, the Barbagia, which was still difficult to access a few decades ago. This geographical situation discouraged immigration and promoted consanguinity, reducing the diversity of the genetic heritage. In the area of ​​exceptional longevity, in the southeast of the Province of Nuoro, 91 people have become centenarians among the 18,000 people who were born in the region between 1880 and 1900. In one village in particular, Seulo, 20 centenarians were identified between 1996 and 2016. In comparison, according to Statistics Canada, there were 17.4 centenarians per 100,000 inhabitants in Canada in 2011.

The analysis of genes involved in inflammation, cancer and heart disease did not reveal any significant difference that could be related to the exceptional longevity of the Sardinians. Researchers therefore suspect that environmental characteristics, lifestyle and diet are much more important than genetic predispositions for a long and healthy life. Many of these Sardinian centenarians are shepherds or farmers who have been doing a great deal of outdoor physical activity throughout their lives. The Sardinian diet, which is part of the Mediterranean diet, could play an important role in the longevity of the inhabitants of this Blue Zone. Indeed, the Sardinian diet consists of homegrown vegetables (mainly beans, tomatoes, eggplants), whole-grain bread, Pecorino cheese made from whole milk from grass-fed sheep, and local red wine particularly rich in polyphenols. The traditional Sardinian diet included meat once a week at most.

When journalist Dan Buettner asked some of these centenarians the reason for their exceptional longevity, many mentioned the importance of family and social ties; in Sardinia, elderly people live with their family rather than in retirement homes. The elderly who live in the Sardinian Blue Zone believe they have excellent mental well-being and report few symptoms of depression. An Italian study of 160 elders of the Sardinian Blue Zone reports that the trait of resilience was significantly associated with markers of good mental health. For these seniors, resilience and satisfaction derived from social ties are predictors of all markers of good mental health.

Okinawa, Japan
Japan has one of the largest concentrations of centenarians in the world, more than 34.7 per 100,000 inhabitants in 2010. The inhabitants of the islands of the Okinawa archipelago in southwestern Japan have a particularly high life expectancy, and 66.7 centenarians per 100,000 inhabitants have been recorded in this prefecture. Women living in Okinawa are 3 times more likely to live to age 100 than North Americans. The Okinawa diet is plant-based, and includes many leafy green vegetables, sweet potatoes, fish and seafood. The majority of Okinawa’s centenarians maintained a vegetable garden during their lifetime and moderate physical activity, which helps reduce stress and stay in shape. The people of Okinawa traditionally practice self-restraint when it comes to food, by following the Confucian teaching hara hachi bu, which recommends eating so as to be 80% satiated at the end of a meal. Older people in Okinawa are very active and maintain strong family and social ties, for example through regular meetings called moai. It is very important for them to make sense of their life. To have an ikigaiis to have a reason to get up every morning.

Nicoya, Costa Rica
Life expectancy is relatively high in Costa Rica (82.1 for women and 77.4 for men), especially in the region of the Nicoya Peninsula where men aged 60 are 7 times more likely to become centenarians than other Costa Ricans. Like Sardinia, Nicoya is a region that has been relatively isolated for hundreds of years. The cancer mortality rate is 23% lower than in the rest of the country, and Nicoya residents have a plant-based diet (squash, black beans, corn tortillas, plenty of local fruits), but that also includes eggs and meat (chicken and pork). The centenarians of Nicoya are very physically active, have strong family ties as well as strong religious faith, and like to work. Their stress level is low and they are generally very positive and happy.

Loma Linda, United States
The only identified Blue Zone in North America is located in Loma Linda, a city in Southern California, located 100 km east of Los Angeles, where there is a community of 9,000 members of the Seventh-day Adventist Church. In California, a 30-year-old Adventist man will live on average 7.3 years longer than a white Californian of the same age. A 30-year-old Adventist woman will live on average 4.4 years longer than a Californian of the same age. Knowing that about two thirds of Americans die from cardiovascular disease or cancer, it is not surprising that Adventists are living longer as their way of life means they are less at risk of developing these diseases. About half of Adventists are vegetarians or rarely eat meat, and non-vegetarian Adventists are twice as likely to develop cardiovascular disease. The majority of Adventists are non-smokers and do not drink alcohol. As a result, they have a lower incidence of lung cancer than Americans in general. Adventists are physically active and have a very developed community spirit, as they are very religious and their church encourages its members to help one another.

Icaria, Greece
Icaria is a Greek island in the Eastern Aegean Sea where one in three inhabitants will reach the age of 90. The incidence of cancer, cardiovascular disease, diabetes and dementia is significantly lower than the rest of the world. As in Sardinia, Okinawa and other Blue Zones, Icarians maintain a vegetable garden at home and lead a low-stress life. Their diet, of the Mediterranean type, is composed of vegetables (potatoes, peas, lentils, green leafy vegetables), fruits, olive oil, fish, goat milk, dairy products, and a little meat. Icarians eat little sugar and drink coffee, red wine and herbal teas made from rosemary, sage, oregano and artemisia daily. Icarians who observe the calendar of the Greek Orthodox Church must fast regularly, and caloric restriction is known to slow down the aging process in mammals.

The inhabitants of the Blue Zones, Okinawa, Sardinia, Nicoya, Icaria and Loma Linda, share characteristics in their lifestyle that contribute to their longevity. In his book The Blue Zones, Dan Buettner lists 9 common features:

    • Moderate and regular physical activity, throughout life.
    • Caloric restriction.
    • Semi-vegetarianism, food largely sourced from plants.
    • Moderate alcohol consumption (especially red wine).
    • Give meaning and purpose to life.
    • Reduced stress.
    • Engagement in spirituality or religion.
    • Family is at the centre of life.
    • Social commitment, integration in the community.
Intermittent fasting: A new approach to weight loss?

Intermittent fasting: A new approach to weight loss?

The excessive accumulation of body fat, particularly when concentrated in the abdomen, is an important risk factor for several diseases, including heart diseasetype 2 diabetesdementia as well as several types of cancer. Consequently, for people who are overweight or obese, weight loss is a very important way to reduce the incidence and progression of several of these diseases.

Many studies show that weight loss is indeed associated with a significant improvement of several aspects of the metabolism. For example, an American study showed that among overweight individuals with diabetes, a 5-10% loss of body weight was associated with a notable improvement of several risk factors for heart disease (glycemia, blood pressure, triglycerides, HDL cholesterol) after one year.  These positive effects are even more pronounced when weight loss is more significant, in particular with regard to sugar metabolism, but the key takeaway is that weight loss, even when relatively modest, has a very positive impact on health.

Unfortunately, losing weight is not a “small” matter, since it entails significantly reducing calorie intake for long periods.  However, the results of the CALERIE (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy) study show that it is possible: in this study, conducted over two years, participants successfully reduced their calorie intake by 12%, which translated into a 10% weight loss and a significant improvement of several cardiometabolic risk factors. However, this decrease in calorie intake was well below what researchers wanted (25%), even though participants were closely monitored and could ask for advice from several specialists in the research team.  Significantly reducing food consumption, namely by 500 to 600 calories daily, thus represents a difficult objective to achieve for most people, which explains the well-documented difficulty of adhering, in the long term, to popular weight loss diets developed over the last few years.  Generally, these diets are associated with relatively significant short-term weight loss, but it is very difficult to maintain this loss in the longer term and the majority of people regain the lost pounds (and sometimes even more) after a certain time.  When these diets are repeatedly attempted, they cause what is known as the “yo-yo” effect, which is not only discouraging but can also be harmful to health: in fact, a recent study showed that in patients with a history of cardiovascular events, frequent body-weight fluctuations were associated with a marked increase in the risk of myocardial infarction (117%), stroke (136%), diabetes (78%), and premature death (124%).

Strict but brief restriction
To overcome these limitations, more and more researchers have focused on fasting as a way to take advantage of the benefits associated with caloric restriction.  Instead of consistently reducing the number of calories consumed every day, which seems virtually impossible for the majority of people, this approach involves alternating periods of normal calorie intake with more or less prolonged fasting periods. What we refer to as “intermittent fasting”, for example, consists of fasting or drastically reducing calorie intake (500 calories a day) intermittently, for example, 1 or 2 days a week. These fasting periods can be consecutive, as in the 5:2 diet (5 days of normal diet followed by two days of fasting), or alternating (one out of two days, for example). In both cases, studies show that intermittent fasting is associated with weight loss and an improvement of several cardiometabolic markers, similar to the results obtained following continuous caloric restriction, and could therefore present an interesting alternative.

Nevertheless, an inherent limit to this type of strict fasting is that it remains very difficult for many people to completely deprive themselves of food for 2-3 days. Not to mention that the complete elimination of calories can lead to severe complications in some people, in particular in elderly or frail subjects.

It is in this context that Dr. Valter Longo’s team (University of South California) came up with the idea of developing a diet that reproduces the positive effects of fasting on the body, but without completely forgoing food. Their research conducted on mice showed that a less strict caloric restriction (calories reduced by half), achieved through a plant-based diet high in polyunsaturated fats but low in protein and carbohydrates, could mimic the effects of very strict fasting on several cardiometabolic risk factors and was associated with a significant improvement on health (fewer cancers, reduction in bone-density loss, improvement of cognitive performance) as well as of the life expectancy of the animals. Referred to as the “fasting mimicking diet” (FMD), this new type of caloric restriction could thus represent a new approach to not only lose weight but also improve health in general.

This strategy’s potential is clearly illustrated by the results of a phase 2 clinical study recently published in Science Translational Medicine. The 100 study participants were divided into a control group that followed their usual diet, and a study group that were prescribed the FMD for 5 consecutive days every month, for a period of three months. Afterward, the groups were switched, meaning that the participants from the first control group tested the FMD, whereas the volunteers in the study group reverted to their usually dietary habits.

The results obtained are extremely interesting.  One week following the end of the third caloric restriction cycle using the FMD, participants had lost on average 3 kilos (6.6 lb.), had a smaller waistline (3 cm), and showed an improvement in their blood pressure compared to the control group (- 4 mm Hg). Positive effects of caloric restriction on fasting glucose, the lipid profile (triglycerides, cholesterol), inflammatory protein levels (C-reactive protein), and certain growth factors such as IGF-1 (implicated in the development of cancer) were also observed, in particular in individuals who presented anomalies in these markers at the start of the study. For example, the blood sugar level of participants who were prediabetic at the beginning of the study returned to normal after the intervention.

Caloric restriction using the FMD is still at the experimental stage and further research is necessary to better evaluate its effects in the longer term. In the meantime, one thing is certain: most chronic diseases currently affecting the population are a consequence of the overconsumption of food, and there are only advantages to eating less, even if only a few days a month.

Type 2 diabetes can be cured

Type 2 diabetes can be cured

Type 2 diabetes is without question one of the most serious consequences of being overweight. With the steady increase in obesity worldwide, the International Diabetes Federation estimates that 415 million adults have diabetes, and that 318 million are “pre-diabetic,” i.e., have chronic glucose intolerance, which puts them at high risk of eventually developing the disease. This is a major concern, as diabetes causes premature aging of the blood vessels and significantly increases the risk of cardiovascular disease.

Type 2 diabetes is generally considered to be a chronic, irreversible and incurable disease, for which the only therapeutic option is to limit the damage caused by hyperglycemia. In this testimonial, Normand Mousseau, Professor of Physics at Université de Montréal, demonstrates that this is not the case, and that drastic lifestyle changes leading to significant weight loss may be sufficient to restore blood glucose levels and to completely eliminate diabetes without medical or pharmacological intervention. This is a spectacular example of the immense potential of lifestyle to not only prevent but also cure certain diseases resulting from being overweight. 

I was diagnosed with type 2 diabetes four years ago, in May 2013. Seeking treatment for an infection that would not heal, I consulted a doctor. I was 46, I didn’t have a family physician and hadn’t had a medical examination in a long time. Indeed, despite being very overweight – at the time, I weighed 230 pounds (104 kg) at 5’11” (180 cm) – I thought I was in good health.

A few days after the blood test recommended by my doctor, he gave me the bad news: my fasting blood sugar exceeded 14 mmol/l, double the threshold for diabetes. When I asked him what I could do to heal, he replied that type 2 diabetes is a chronic and degenerative disease. All I could do was slow its progression and limit its effects by combining medication with weight loss, better nutrition, and a little physical exercise.

The news hit me hard: type 2 diabetes is a terrible and insidious disease that affects quality of life, and even causes death.

As soon as I was diagnosed, I decided to change my lifestyle. While taking 500 then 850 mg of metformin twice a day, I cut sugar, added a lot of vegetables to my diet, and started running. I also learned to use a blood glucose meter to monitor the daily fluctuations in my blood sugar, in constant fear that it might exceed acceptable thresholds.

As a result of these lifestyle changes, I quite rapidly lost about 30 pounds. By the end of 2013, I was running 5 to 7 km two or three times a week and weighed around 195 pounds. My diabetes was still there, however, as was the certainty that the disease would progress and that all of my efforts would be in vain.

Finally, almost a year after my diagnosis, in April 2014, I decided to redouble my efforts and checked for myself whether type 2 diabetes was really a chronic disease. After a few days of research in medical journals and on the Internet, among the false promises and half-truths, I found news that seemed credible and confirmed that yes, type 2 diabetes can be cured!

The treatment proposed by Professor Roy Taylor of Lancaster University in the United Kingdom is alarmingly simple: you have to lose weight, usually a lot, and probably quickly.

Taylor’s approach is based on three sets of results, some of which date back more than 50 years:

  • First, it has been known since the mid-1970s that a large percentage of people with type 2 diabetes who undergo bariatric surgery to reduce stomach size and facilitate weight loss recover from diabetes, so the disease is not irreversible;
  • Second, it has been known for about 20 years that the beta cells of the pancreas, which are responsible for the production of insulin, are very sensitive to the presence of fat molecules;
  • Finally, thanks to magnetic imaging, it has been observed that, even in a group of people with a healthy weight, some individuals with diabetes show an above-average presence of fat in their internal organs.

Based on this work, Taylor concluded that the presence of fat in internal organs is toxic to the pancreas, and that reducing it can allow the organ to function normally again. He then developed an approach that he tested on 13 diabetic and overweight individuals: for two months, they adopted a very low-calorie diet of 600 to 700 calories a day. Despite the small study size, the results, published in 2011, are staggering: the majority of participants reached blood glucose levels below the diabetes threshold and maintained normal blood glucose levels for three months after the end of the study. In a journal article published shortly afterwards, Taylor stated that his approach also worked for people on insulin.

I was astounded when I read this research. Could the solution be that simple?

Since I had little to lose by testing the approach, except for a little weight, I started on a very low-calorie diet, adopting an alternating two-phase approach:

  • a 600-calorie diet for 8 to 10 days, eating a minimum of 200 g of vegetables, and drinking 2 litres of water a day
  • three weeks on a more reasonable 1,500-calorie diet.

By the end of my third 600-calorie round in August 2014, I weighed 165 pounds, had lost about 30 pounds, and was completely cured, with fasting blood glucose levels of about 5.8 mmol/l, without any medication. One year later, in October 2015, my weight had stabilized around 170 pounds, my HbA1c was 5.1%, and my blood sugar was 5.7 mmol/l.

Almost three years after the end of my treatment, I am eating normally while monitoring my weight, I run 8 to 10 km 3 times a week, and I maintain my fasting blood sugar levels around 5.7 mmol/l. Of course, I am still at risk of developing type 2 diabetes – my genetic predisposition hasn’t disappeared! – and if I regain the weight, it is very likely that after some time my pancreas will start to fail again. However, I am no longer diabetic, and that is a great relief.

Since the publication of my book last year, I’ve received many testimonials from people of all ages reporting their success in beating their type 2 diabetes by following this diet. Some of them shared that their doctors were simply amazed. All of them told me that their lives had been changed as a result.

Despite its simplicity, this treatment isn’t easy: losing weight demands significant effort; keeping it off requires iron will and a profound lifestyle change. However, it is worth the effort, as type 2 diabetes is a devastating disease that greatly reduces our quality of life. So, there is no reason not to start today!

Normand Mousseau
Professor of Physics, Université de Montréal

Author of the book “Comment se débarrasser du diabète de type 2 sans chirurgie ni médicament”, Éditions du Boréal (2016). [available in French only]

References:
Lim, E. L., K. G. Hollingsworth, B. S. Aribisala, M. J. Chen, J. C. Mathers and R. Taylor (2011). “Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol.” Diabetologia 54(10): 2506-2514.

Taylor, R. (2013). “Banting Memorial lecture 2012: reversing the twin cycles of type 2 diabetes.” Diabet Med 30(3): 267-275.

Tham, C. J., N. Howes and C. W. le Roux (2014). “The role of bariatric surgery in the treatment of diabetes.” Therapeutic Advances in Chronic Disease T5: 149-157.