Berries are becoming increasingly popular in our diet, whether consumed fresh, frozen, dried or canned, and in related products such as jams, jellies, yogurts, juices and wines. Berries provide significant health benefits because of their high content of phenolic compounds, antioxidants, vitamins, minerals and fibres. Recognizing these health benefits has recently led to a 21% increase in world berry production.

The generic term “berries” is sometimes used to refer to small fruits, but from a botanical point of view, if some berries are genuineberries (blueberries, bilberries, cranberries, currants, lingonberries, elderberries), others are polydrupes (raspberries, blackberries), and the strawberry is a “false fruit” since the achenes (the small seeds on the outer surface of the strawberry) are the actual fruits of the strawberry. Berry fruits are rich in phenolic compounds such as phenolic acids, stilbenes, flavonoids, lignans and tannins (see the classification and structure of these compounds in Figure 1). Berries are particularly rich in anthocyanidins, pigments that give the skin and flesh of these fruits their distinctive red, blue or purple colour (Table 1).


Figure 1. Classification and chemical structure of phenolic compounds contained in berries. Adapted from Parades-López et al., 2010 and Nile & Park, 2014.

Like most flavonoids, anthocyanidins are found in nature as glycosides (compounds made of a sugar and another molecule) called anthocyanins. These anthocyanins can be absorbed in their whole form (linked to different sugars) both in the stomach and in the intestine. Anthocyanins that reach the large intestine can be metabolized by the microbiota (intestinal flora). The maximum concentration of anthocyanins in the bloodstream is reached from 30 minutes to 2 hours after eating berries. However, the maximum plasma concentration (1–100 nmol/L) of anthocyanins is much lower than what is measured in intestinal tissues, indicating that these compounds are metabolized extensively before entering the systemic circulation as metabolites. After administering a radiolabelled anthocyanin to humans, 35 metabolites were identified, 17 in blood, 31 in urine and 28 in feces. Thus, it is likely that these metabolites, rather than the intact molecule, are responsible for the health benefits associated with anthocyanins.

Table 1. Content of phenolic compounds, flavonoids, and anthocyanins of different berries.  Adapted from Parades-López et al., 2010 and Nile & Park, 2014

Berries (genus and species)Phenolic compoundsFlavonoidsAnthocyanins
(mg/100 g fresh fruit)(mg/100 g fresh fruit)(mg/100 g fresh fruit)
Raspberry (Rubus ideaous)121699
Blackberry (Rubus fruticosus)48627682–326
Strawberry (Fragaria x. ananassa)31354
Blueberry (Vaccinium corymbosum)261–5855025–495
Bilberry (Vaccinium myrtillus )52544300
Cranberry (Vaccinium macrocarpon)31515767–140
Redcurrant (Ribes rubrum)1400922
Blackcurrant (Ribes nigrum)29-604644
Elderberry (Sambucus nigra)1044245-791
Red cranberry (Vitis vitis-idea)6527477

Biological activities of berries
Data from in vitro and animal experimental models indicate that the phenolic compounds in berries may produce their beneficial effects through their antioxidant, anti-inflammatory, antihypertensive, and lipid-lowering activities, which could prevent or mitigate atherosclerosis. Perhaps the best-known of the biological activities of phenolic compounds is their antioxidant activity, which helps protect the body’s cells from damage caused by free radicals and counteract certain chronic diseases associated with aging. According to several studies using in vitro and animal models, berries also have anti-cancer properties involving several complementary mechanisms such as induction of metabolic enzymes, modulation of the expression of specific genes and their effects on cell proliferation, apoptosis (programmed cell death, an unsettled process in cancer cells), and signalling pathways inside the cell.

Population studies
In a prospective study conducted in China with 512,891 participants, daily consumption of fruit (all types of fruit) was associated with an average decrease in systolic blood pressure of 4.0 mmHg on average, a decrease of 0.5 mmol/L of blood glucose concentration, a 34% reduction in the risk of major coronary events and a 40% reduction in the risk of cardiovascular mortality. These results were obtained by comparing participants who ate fruits daily to those who did not consume them at all or very rarely. In this study, there was a strong dose-response correlation between the incidence of cardiovascular events or cardiovascular mortality and the amount of fruit consumed. Studies suggest that among the constituents of fruit, it is the flavonoids, and especially the anthocyanins, that are responsible for these protective effects.

A number of prospective and cross-sectional studies have examined the association between the consumption of anthocyanins and cardiovascular risk factors (see this review). In four out of five studies that examined the risks of coronary heart disease or nonfatal myocardial infarction, anthocyanin consumption was associatedwith a reduction in coronary artery disease risk from 12% to 32%. The impact of anthocyanins on the risk of stroke was investigated in 5 studies, but no evidence of a protective effect was found in this case.

With respect to cardiovascular risk factors, studies indicate that higher consumption of anthocyanins is associated with decreased arterial stiffness, arterial pressure, and insulinemia. The decrease in blood pressure associated with the consumption of anthocyanins, -4 mmHg, is similar to that seen in a person after quitting smoking. The effect of anthocyanins on insulin concentration, an average reduction of 0.7 mIU/L, is similar to the effects of a low-fat diet or a one-hour walk per day. A decrease in inflammation has been associated with the consumption of anthocyanins and flavonols, a mechanism that may underlie the reduction of cardiovascular risk and other chronic diseases.

Randomized controlled trials
A systematic review and meta-analysis of 22 randomized controlled trials, representing 1,251 people, report that berry consumption significantly reduces several cardiovascular risk factors, such as blood LDL cholesterol [-0.21 mmol/L on average], systolic blood pressure [-2.72 mmHg on average], fasting glucose concentration [-0.10 mmol/L on average], body mass index [-0.36 kg/m2on average], glycated haemoglobin [HbA1c, -0.20% on average], and tumour necrosis factor alpha [TNF-alpha, 0.99 pg/mL on average], a cytokine involved in systemic inflammation. In contrast, no significant changes were observed for the other markers of cardiovascular disease that were tested: total cholesterol, HDL cholesterol, triglycerides, diastolic blood pressure, ApoAI, ApoB, Ox-LDL, IL-6, CRP, sICAM-1,and sICAM-2.

Another systematic review published in 2018 evaluated randomized controlled trials [RCTs] on the effects of berry consumption on cardiovascular health. Among the 17 high-quality RCTs, 12 reported a beneficial effect of berry consumption on cardiovascular and metabolic health markers. Four out of eleven RCTs reported a reduction in systolic and/or diastolic blood pressure; 3/7 studies reported a favourable effect on endothelial function; 2/3 studies reported an improvement in arterial stiffness; 7/17 studies reported beneficial effects for the lipid balance; and 3/6 studies reported an improvement in the glycemic profile.

Berries and cognitive decline
Greater consumption of blueberries and strawberries was associated with a slowdown in cognitive decline in a prospective study of 16,010 participants in the Nurses’ Health Study aged 70 or older. Consumption of berries was associated with delayed cognitive decline of approximately 2.5 years. In addition, nurses who had consumed more anthocyanidins and total flavonoids had a slower cognitive decline than participants who consumed less.

The exceptional content of phenolic compounds in berries and their positive effects on health remind us that the quality of food is not just about nutrients: proteins, carbohydrates, lipids, vitamins and minerals; a wide variety of other molecules found in plants are absorbed from the intestines and routed through the bloodstream to all cells in the body. While not essential nutrients, phytochemicals such as flavonoids can contribute to better cardiovascular health and healthier aging.

Partager cet article: