Control of inflammation through diet

Control of inflammation through diet

OVERVIEW

  • Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries, which can lead to the development of cardiovascular events such as myocardial infarction and stroke.
  • Two studies show that people whose diet is anti-inflammatory due to a high intake of plants (vegetables, fruits, whole grains), beverages rich in antioxidants (tea, coffee, red wine) or nuts have a significantly lower risk of being affected by cardiovascular disease.
  • This type of anti-inflammatory diet can be easily replicated by adopting the Mediterranean diet, rich in fruits, vegetables, legumes, nuts and whole grains and which has repeatedly been associated with a lower risk of cardiovascular events.

Clinically, the risk of having a coronary event is usually estimated based on age, family history, smoking and physical inactivity as well as a series of measures such as cholesterol levels, blood sugar level and blood pressure. The combination of these factors helps to establish a cardiovascular disease risk “score”, i.e. the likelihood that the patient will develop heart disease over the next ten years. When this score is moderate (10 to 20%) or high (20% and more), one or more specific drugs are generally prescribed in addition to recommending lifestyle changes in order to reduce the risk of cardiovascular events.

These estimates are useful, but they do not take into account other factors known to play an important role in the development of cardiovascular disease. This is especially true for chronic inflammation, a process that actively participates in the formation and progression of plaques that form on the lining of the arteries and can lead to cardiovascular events such as myocardial infarction and stroke.

The clinical significance of this chronic inflammation is well illustrated by studies of patients who have had a heart attack and are treated with a statin to lower their LDL cholesterol levels. Studies show that a high proportion (about 40%) of these people have excessively high blood levels of inflammatory proteins, and it is likely that this residual inflammatory risk contributes to the high rate of cardiovascular mortality (nearly 30%) that affects these patients within two years of starting treatment, despite a significant reduction in LDL cholesterol. In this sense, it is interesting to note that the canakinumab antibody, which neutralizes an inflammatory protein (interleukin-1 β), causes a slight but significant decrease in major cardiovascular events in coronary patients. Statins, used to lower LDL cholesterol levels, are also believed to have an anti-inflammatory effect (reduction in C-reactive protein levels) that would contribute to reducing the risk of cardiovascular events. One of the roles of inflammation is also demonstrated by the work of Dr. Jean-Claude Tardif of the Montreal Heart Institute, which shows that the anti-inflammatory drug colchicine significantly reduces the risk of recurrence of cardiovascular events.

Reducing chronic inflammation is therefore a very promising approach for decreasing the risk of cardiovascular disease, both in people who have already had a heart attack and are at a very high risk of recurrence and in healthy people who are at high risk of cardiovascular disease.

Anti-inflammatory diet
Two studies published in the Journal of the American College of Cardiology suggest that the nature of the diet can greatly influence the degree of chronic inflammation and, in turn, the risk of cardiovascular disease. In the first of these two articles, researchers analyzed the link between diet-induced inflammation and the risk of cardiovascular disease in 166,000 women and 44,000 men followed for 24 to 30 years. The inflammatory potential of the participants’ diet was estimated using an index based on the known effect of various foods on the blood levels of 3 inflammatory markers (interleukin-6, TNFα-R2, and C-reactive protein or CRP). For example, consumption of red meat, deli meats and ultra-processed industrial products is associated with an increase in these markers, while that of vegetables, fruits, whole grains and beverages rich in antioxidants (tea, coffee, red wine) is on the contrary associated with a decrease in their blood levels. People who regularly eat pro-inflammatory foods therefore have a higher inflammatory food index, while those whose diet is rich in anti-inflammatory foods have a lower index.

Using this approach, the researchers observed that a higher dietary inflammatory index was associated with an increased risk of cardiovascular disease, with a 40% increase in risk in those with the highest index (Figure 1). This increased risk associated with inflammation is particularly pronounced for coronary heart disease (acute coronary syndromes including myocardial infarction) with an increased risk of 46%, but seems less pronounced for cerebrovascular accidents (stroke) (28% increase in risk). The study shows that a higher dietary inflammation index was also associated with two risk markers for cardiovascular disease, higher circulating triglyceride levels as well as lower HDL cholesterol. These results therefore indicate that there is a link between the degree of chronic inflammation generated by diet and the risk of long-term cardiovascular disease, in agreement with data from a recent meta-analysis of 14 epidemiological studies that have explored this association.

Figure 1. Change in the risk of cardiovascular disease depending on the inflammatory potential of the diet. From Li et al. (2020). The dotted lines indicate the 95% confidence interval.

Anti-inflammatory nuts
A second study by a group of Spanish researchers investigated the anti-inflammatory potential of walnuts. Several epidemiological studies have reported that regular consumption of nuts is associated with a marked decrease in the risk of cardiovascular disease. For example, a recent meta-analysis of 19 prospective studies shows that people who consume the most nuts (28 g per day) have a lower risk of developing coronary artery disease (18%) or of dying from these diseases (23%). These reductions in the risk of cardiovascular disease may be explained in part by the decrease in LDL cholesterol (4%) and triglyceride (5%) levels observed following the consumption of nuts in intervention studies. However, this decrease remains relatively modest and cannot alone explain the marked reduction in the risk of cardiovascular disease observed in the studies.

The results of the Spanish study strongly suggest that a reduction in inflammation could greatly contribute to the preventative effect of nuts. In this study, 708 people aged 63 to 79 were divided into two groups, a control group whose diet was completely nut free and an intervention group, in which participants consumed about 15% of their calories daily in the form of walnuts (30–60 g/day). After a period of 2 years, the researchers observed large variations in the blood levels of several inflammatory markers between the two groups (Figure 2), in particular for GM-CSF (a cytokine that promotes the production of inflammatory cells) and interleukin-1 β (a highly inflammatory cytokine whose blood levels are correlated with an increased risk of death during a heart attack). This reduction in IL-1 β levels is particularly interesting because, as mentioned earlier, a randomized clinical study (CANTOS) has shown that an antibody neutralizing this cytokine leads to a reduction in the risk of myocardial infarction in coronary heart patients.

Figure 2. Reduction in blood levels of several inflammatory markers by a diet enriched with nuts. From Cofán et al. (2020). GM-CSF: granulocyte-monocyte colony stimulating factor; hs-CRP: high-sensitivity C-reactive protein; IFN: interferon; IL: interleukin; SAA: serum amyloid A; sE-sel: soluble E-selectin; sVCAM: soluble vascular cell adhesion molecule; TNF: tumour necrosis factor.

Taken together, these studies therefore confirm that an anti-inflammatory diet provides concrete benefits in terms of preventing cardiovascular disease. This preventative potential remains largely unexploited, as Canadians consume about half of all their calories in the form of ultra-processed pro-inflammatory foods, while less than a third of the population eats the recommended minimum of five daily servings of fruits and vegetables and less than 5% of the recommended three servings of whole grains. This imbalance causes most people’s diets to be pro-inflammatory, contributes to the development of cardiovascular diseases as well as other chronic diseases, including certain common cancers such as colon cancer, and reduces the life expectancy.

The easiest way to restore this balance and reduce inflammation is to eat a diet rich in plants while reducing the intake of industrial products. The Mediterranean diet, for example, is an exemplary anti-inflammatory diet due to its abundance of fruits, vegetables, legumes, nuts and whole grains, and its positive impact will be all the greater if regular consumption of these foods reduces that of pro-inflammatory foods such as red meat, deli meats and ultra-processed products. Not to mention that this diet is also associated with a high intake of fibre, which allows the production of anti-inflammatory short-chain fatty acids by the intestinal microbiota, and of phytochemicals such as polyphenols, which have antioxidant and anti-inflammatory properties.

In summary, these recent studies demonstrate once again the important role of diet in preventing chronic disease and improving healthy life expectancy.

The importance of maintaining normal cholesterol levels, even at a young age

The importance of maintaining normal cholesterol levels, even at a young age

OVERVIEW

  • A study of 400,000 middle-aged people (average age 51) shows that above-normal cholesterol levels are associated with a significant increase in the risk of cardiovascular disease in the decades that follow.
  • This risk is particularly high in people who were under the age of 45 at the start of the study, suggesting that prolonged exposure to excess cholesterol plays a major role in increasing the risk of cardiovascular disease.
  • Reducing cholesterol levels as early as possible, from early adulthood, through lifestyle changes (diet, exercise) can therefore limit the long-term exposure of blood vessels to atherogenic particles and thus reduce the cardiovascular events during aging.

It is now well established that high levels of cholesterol in the bloodstream promote the development of atherosclerosis and thereby increase the risk of cardiovascular events such as myocardial infarction and stroke. It is for this reason that the measurement of cholesterol has been part of the basic blood test for more than 30 years and that a deviation from normal values is generally considered a risk factor for cardiovascular disease.

Remember that cholesterol is insoluble in water and must be combined with lipoproteins to circulate in the blood. Routinely, the way to determine cholesterol levels is to measure all of these lipoproteins (what is called total cholesterol) and then distinguish two main types:

  1. HDL cholesterol, colloquially known as “good cholesterol” because it is involved in the elimination of cholesterol and therefore has a positive effect on cardiovascular health;
  2. LDL cholesterol, the “bad” cholesterol because of its involvement in the formation of atherosclerotic plaques that increase the risk of heart attack and stroke.

LDL cholesterol is difficult to measure directly and its concentration is rather calculated from the values determined for total cholesterol, HDL cholesterol and triglycerides using a mathematical formula:

= – – / 2.2

However, this method has its limits, among other things because a large proportion of cholesterol can be transported by other types of lipoproteins and therefore does not appear in the calculation. However, it is very easy to measure all of these lipoproteins by simply subtracting HDL cholesterol from total cholesterol:

– =

This calculation makes it possible to obtain the concentration of what is called “non-HDL” cholesterol, i.e. all of the atherogenic lipoproteins that are deposited at the level of the wall of the arteries and form atheromatous plaques that significantly increase the risk of cardiovascular problems. Although clinicians are more familiar with LDL cholesterol measurement, cardiology associations, including the Canadian Cardiovascular Society, now recommend that non-HDL cholesterol also be used as an alternative marker for risk assessment in adults.

Short-term risks
The decision to initiate cholesterol-lowering therapy depends on the patient’s risk of experiencing a cardiovascular event in the next 10 years. To estimate this risk, clinicians use what is called a “risk score” (the Framingham risk score, for example), a calculation based primarily on the patient’s age, history of cardiovascular disease, family history and certain clinical values ​​(blood pressure, blood sugar, cholesterol). For people who are at high risk of cardiovascular disease, especially those who have suffered a coronary event, there is no hesitation: all patients must be taken care of quickly, regardless of LDL or non-HDL cholesterol levels. Several clinical studies have shown that in this population, the main class of cholesterol-lowering drugs (statins) helps prevent recurrences and mortality, with an absolute risk reduction of around 4%. As a result, these drugs are now part of the standard therapeutic arsenal to treat anyone who has survived a coronary event or who has stable coronary heart disease.

The same goes for people with familial hypercholesterolemia (HF), a genetic disorder that exposes individuals to high levels of LDL cholesterol from birth and to a high risk for cardiovascular events before they even turn 40. A study has just recently shown that HF children who were treated with statins at an early age had a much lower incidence of cardiovascular events in adulthood (1% vs. 26%) than their parents who had not been treated early with statins.

Long-term risks
However, the decision to treat high cholesterol is much more difficult for people who do not have these risk factors. Indeed, when the risk of cardiovascular events over the next 10 years is low or moderate, the guidelines tolerate much higher LDL and non-HDL cholesterol levels than in people at risk: for example, when we usually try to keep LDL cholesterol below 2 mmol/L for people at high risk, a threshold twice as high (5 mmol/L) is proposed before treating people at low risk (Table 1). In this population, there is therefore a great deal of room for maneuver in deciding whether or not to start pharmacological treatment or to fundamentally change lifestyle habits (diet, exercise) to normalize these cholesterol levels.

Table 1. Canadian Cardiovascular Society guidelines for dyslipidemia treatment thresholds. *FRS = Framingham Risk Score. Adapted from Anderson et al. (2016).

 

This decision is particularly difficult for young adults, who are generally considered to be at low risk of cardiovascular events over the next 10 years (age is one of the main factors used for risk assessment and therefore the younger you are, the lower the risk). On the one hand, a young person, say in their early forties, who has above-normal LDL or non-HDL cholesterol, but without exceeding the recommended thresholds and without presenting other risk factors, probably does not have a major risk of being affected by a short-term cardiovascular event. But given their young age, they may be exposed to this excess cholesterol for many years and their risk of cardiovascular disease may become higher than average once they turn 70 or 80.

Recent studies indicate that it would be wrong to overlook this long-term negative impact of higher-than-normal non-HDL cholesterol. For example, it has been shown that an increase in non-HDL cholesterol at a young age (before age 40) remains above normal for the following decades and increases the risk of cardiovascular disease by almost 4 times. Another study that followed for 25 years a young population (average age of 42 years) who presented a low risk of cardiovascular disease at 10 years (1.3%) obtained similar results: compared to people with normal non-HDL cholesterol (3.3 mmol/L), those with non-HDL cholesterol above 4 mmol/L had an 80% increased risk of cardiovascular mortality.   As shown in Table 1, these non-HDL cholesterol values are below the thresholds considered to initiate treatment in people at low risk, suggesting that hypercholesterolemia that develops at a young age, even if it is mild and not threatening in the short term, may nevertheless have longer-term adverse effects.

This concept has just been confirmed by a very large study involving nearly 400,000 middle-aged people (average age 51) who were followed for a median period of 14 years (maximum 43 years). The results show a significant increase as a function of time in the risk of cardiovascular disease based on non-HDL cholesterol levels: compared to the low category (<2.6 mmol/L), the risk increases by almost 4 times for non-HDL cholesterol ≥ 5.7 mmol/L, as much in women (increase from 8% to 34%) as in men (increase from 13% to 44%) (Figure 1).

Figure 1. Increased incidence of cardiovascular disease based on non-HDL cholesterol levels. From Brunner et al. (2019).

The largest increase in risk associated with higher non-HDL cholesterol levels was observed in people who were under 45 years of age at the beginning of the study (risk ratio of 4.3 in women and 4.6 in men for non-HDL cholesterol ≥5.7 mmol/L vs. the reference value of 2.6 mmol/L) (Figure 2). In older people (60 years or more), these risk ratios are much lower (1.4 in women and 1.8 in men), confirming that it is prolonged exposure (for several decades) to high levels of non-HDL cholesterol that plays a major role in increasing the risk of cardiovascular disease.

Figure 2. Age-specific and sex-specific association of non-HDL cholesterol and cardiovascular disease. From Brunner et al. (2019).

According to the authors, there would therefore be great benefits in reducing non-HDL cholesterol levels as soon as possible to limit the long-term exposure of blood vessels to atherogenic particles and thus reduce the risk of cardiovascular events. An estimate based on the results obtained indicates that in people 45 years of age and under who have above-normal non-HDL cholesterol levels (3.7–4.8 mmol/L) and other risk factors (e.g. hypertension), a 50% reduction in this type of cholesterol would reduce the risk of cardiovascular disease at age 75 from 16% to 4% in women and from 29% to 6% in men. These significant reductions in long-term risk therefore add a new dimension to the prevention of cardiovascular disease: it is no longer only the presence of high cholesterol levels which must be considered, but also the duration of exposure to excess cholesterol.

What to do if your cholesterol is high
If your short-term risk of cardiovascular accident is high, for example, because you suffer from familial hypercholesterolemia or you combine several risk factors (heredity of early coronary artery disease, hypertension, diabetes, abdominal obesity), it is certain that your doctor will insist on prescribing a statin if your cholesterol is above normal.

For people who do not have these risk factors, the approach that is generally recommended is to modify lifestyle habits, particularly in terms of diet and physical activity. Several of these modifications have rapidly measurable impacts on non-HDL cholesterol levels: weight loss for obese or overweight people, replacing saturated fat with sources of monounsaturated fat (olive oil, for example) and omega-3 polyunsaturated fats (fatty fish, nuts and seeds), an increase in the consumption of soluble fibres, and the adoption of a regular physical activity program. This roughly corresponds to the Mediterranean diet, a diet that has repeatedly been associated with a decreased risk of several chronic diseases, particularly cardiovascular disease.

The advantage of adopting these lifestyle habits is that not only do they help normalize cholesterol levels, but they also have several other beneficial effects on cardiovascular health and health in general. Despite their well-documented clinical utility, randomized clinical studies indicate that statins fail to completely reduce the risk of cardiovascular events, both in primary and secondary prevention. This is not surprising, since atherosclerosis is a multifactorial disease, which involves several phenomena other than cholesterol (chronic inflammation in particular). This complexity means that no single drug can prevent cardiovascular disease alone. And it is only by adopting a comprehensive approach based on a healthy lifestyle that we can make significant progress in preventing these diseases.