Pure fruit juices: sugary drinks like any other?

Pure fruit juices: sugary drinks like any other?

So-called “sugary drinks” generally refer to beverages containing added sugars (sucrose, corn syrup, juice concentrates or other sweeteners) such as soft drinks, fruit punches, energy drinks or even sports drinks. These beverages are the main source of simple sugar in the diet of North Americans and a significant proportion of calories consumed daily, especially among teenagers and young adults. In the United States, for example, sugary drinks account for an average of 9.3% of calories among young men and 8.2% among young women. This is huge, especially considering that the World Health Organization recommends limiting the total daily energy intake of added sugars to a maximum of 10% of calories, or 50 g of sugar.

This 10% limit is based on a large number of studies showing that a high intake of added sugars promotes overweight and increases the risk of type 2 diabetes, coronary heart disease and stroke. The negative impact on cardiovascular health is of particular concern, as a recent study has shown that regular consumption of soft drinks for several years is associated with an increased risk of premature mortality of around 20%, mainly as a result of cardiovascular disease.

Traditionally, 100% pure fruit juices are not included in the sugary drinks category as the sugar they contain is of natural origin and not artificially added. However, fruit juice sugar is identical to that of artificially sweetened drinks (glucose and fructose) and is present in quite comparable amounts (Figure 1). It is therefore possible that fruit juices, even when 100% pure, may cause the same adverse effects as other sugary drinks when consumed in large quantities.

Figure 1. Comparison of the sugar content of different fruit juices and beverages containing added sugars. Adapted from Gill and Sattar (2014).

This possibility has recently been explored by an analysis of the link between the consumption of sugary drinks and pure fruit juice and the risk of premature death. Looking at the eating habits of 13,440 participants, the researchers found that people who drank a lot of sugary drinks including pure fruit juice (10% or more of daily calories) were 44% more likely to die prematurely from coronary artery disease compared to people who limit the consumption of these drinks to less than 5% of daily calories. When the types of sugary drinks were analyzed separately, the increased risk of coronary death is 11% for each serving of 355 mL of sweetened beverages and 24% for each 355 mL of pure juice consumed. It should be noted, however, that the small number of deaths associated with coronary heart disease in the study does not support the conclusion that fruit juices are more harmful than other sugary drinks at these levels. Certainly, however, it seems that pure juices, when consumed in large quantities, can greatly contribute to the rise in premature death caused by sugary drinks. These results strengthen the case of the growing number of people (see here and here, for example) for whom fruit juices, even when 100% pure, are sugary drinks in the same category as the others and should therefore be totally eliminated from the diet.

A question of quantity
However, it should be noted that the negative effect of fruit juices on the risk of premature mortality is observed for fairly large quantities of juice, well above the quantities that are generally recommended (150 mL per day). At these more moderate amounts, the effect of fruit juice on health is much more nuanced: a review of the studies carried out to date shows that the consumption of reasonable quantities of fruit juice, i.e., a serving of 150–240 mL a day, has little effect on weight gain, both in adults (gain of about 0.2 kg over 3–4 years) and children (very slight increase in the BMI-z score, i.e., the body mass index of children adjusted for sex and age) (Table 1). These increases are significantly lower than those observed for sugary drinks such as soft drinks: for example, a study showed that each serving of soft drink consumed daily causes an increase in body weight of about 1 kg over a period of 4 years, three times more than the one associated with the consumption of a daily serving of pure fruit juice (0.3 kg).

Table 1. Health effects of consumption of pure fruit juices. Adapted from Auerbach et al. (2018).

Outcome PopulationSubjectsAmounts consumedResultsStudy
Tooth decayChildren1,919≥1 serving*/d vs. ≤1 serving/week20% increase in riskSalas et al. (2015)
Weight gainAdults108,708Each additional serving/dayGain of 0.22 kg over 4 yearsHebden et al. (2015)
Children20,639Consumption vs. no consumptionNo associationO’Neil and Nicklas (2008)
Children34,470Each additional serving/dayBMI z score** change of 0.09 U over 1 year (0.03, 0.17 U) in children 1–6 y and no change in children 7–18 yAuerbach et al. (2017)
Adults49,108For each serving/dayGain of 0.18 kg over 3 yearsAuerbach et al. (2018)
Cardiovascular diseasesAdults114,279Each additional serving/d of 100% citrus juice28% decrease in risk of ischemic strokeJoshipura et al. (2009)
Adults54,383Highest vs. lowest consumers15% decrease in the risk of acute coronary syndromesHansen et al. (2010)
Adults109,635For each serving/day (citrus juice)No significant effectHung et al. (2004)
Adults34,5601–7 servings (150 mL)/week17% decrease in risk of cardiovascular disease (24% risk of stroke)Scheffers et al. (2019)
Type 2 diabetesAdults137,663Highest vs. lowest consumers3% increase in riskXi et al. (2014)
Adults440,937Each additional serving/day7% increase in riskImamura et al. (2015)
Adults120,877≥1 serving/day vs. ≤1 serving/monthNo effectSchulze et al. (2004)
* 240 mL serving; ** “BMI-z” (Body mass index z-score) is a relative measure of weight, adjusted for age and sex of the child.

A marked difference in the risk of developing type 2 diabetes has also been observed between artificially sweetened beverages and pure fruit juices. For example, one study found that daily consumption of soft drinks or fruit punches with added sugars caused an approximately two-fold increase in the risk of diabetes, while that of fruit juice had no impact (Figure 2). A meta-analysis of 4 studies reported similar results, i.e., fruit drinks containing added sugars increased the risk of diabetes while consumption of pure fruit juices had no effect. It should be noted, however, that other studies have reported a slight increase in the risk of diabetes in people consuming 240 mL and more per day of fruit juice (see Table 1).

Figure 2. Comparison of the increased risk of type 2 diabetes associated with the consumption of soft drinks, fruit juices containing added sugars, and 100% pure fruit juices. From Schulze et al. (2004).

The effect of moderate amounts of pure fruit juice is particularly interesting with regard to cardiovascular health. It has long been known that people who eat a lot of fruits are less likely to be affected by cardiovascular disease. These benefits are due, at least in part, to the high fruit content of polyphenols (including flavonoids) that prevent the oxidation of LDL cholesterol and prevent the development of atherosclerotic plaques. Since these polyphenols are extracted during fruit pressing and are therefore present in pure fruit juices, it is possible that these juices may also have positive effects on cardiovascular health. This has recently been highlighted by a study in the Netherlands among 34,560 participants aged 20 to 69 (EPIC-NL study). The researchers found that people who regularly consumed small amounts of pure fruit juice (150 mL daily, 7 days a week) were 17% less likely to be affected by cardiovascular disease, especially stroke (24% less risk). However, these protective effects disappeared at higher amounts of juice (> 8 glasses of pure juice per week), suggesting that the window of consumption associated with these preventive effects is relatively narrow. Decreases in the risk of ischemic stroke and acute coronary events following consumption of pure fruit juice have also been reported. It is also interesting to note that a study recently reported that people who consumed 150 mL of orange juice every day had half the risk of cognitive decline compared to those who rarely consumed it (once a month).

It is therefore possible that the different molecules present in fruit juices (vitamins, minerals, polyphenols) in some way counteract the negative effects of high amounts of sugar by reducing oxidative stress and chronic inflammation, two phenomena involved in the development of cardiovascular and neurodegenerative diseases. In any event, these observations suggest that it is clearly an exaggeration to say that pure fruit juices, in small quantities, are as harmful to health as beverages containing added sugars. It is only in high quantities that pure fruit juice becomes a sugary drink like any other and can cause the many health problems that are associated with excess sugar.

That being said, everyone agrees that the best way to consume fruits is in their whole form. In addition to the different bioactive compounds that are present in juices, whole fruits also contain fibres that increase the feeling of satiety (which reduces the amount of sugar ingested), prevent excessive fluctuations in blood sugar, and contribute to the maintenance of a diversified intestinal microbiome. Ideally, we should therefore favour the consumption of fresh fruits and drink water rather than juice to quench our thirst.

However, for people who may have difficult access to fresh fruit or prefer to consume it in a liquid form, the studies mentioned earlier suggest that pure fruit juice may be a valid alternative, but only when consumed in moderate amounts, around a small glass (150 mL) a day. At these amounts, juices significantly contribute to the daily intake of vitamins and minerals, and studies to date suggest a positive impact on the prevention of cardiovascular disease, especially stroke. It also appears that a moderate intake of pure juices does not have a major impact on the risk of overweight and diabetes, including in young children, confirming the validity of the recommendations of the American Academy of Pediatrics to limit the consumption of pure juice to 150 mL per day.

Toward a consensus on the effects of dietary fat on health

Toward a consensus on the effects of dietary fat on health

The role of dietary fat in the development of obesity, cardiovascular disease and type 2 diabetes has been the subject of vigorous scientific debate for several years. In an article recently published in the prestigious Science, four experts on dietary fat and carbohydrate with very different perspectives on the issue (David Ludwig, Jeff Volek, Walter Willett, and Marian Neuhouser) identified 5 basic principles widely accepted in the scientific community and that can be of great help for non-specialists trying to navigate this issue.

This summary is important as the public is constantly bombarded with contradictory claims about the benefits and harmful effects of dietary fat. Two great, but diametrically opposed currents have emerged over the last few decades:

  • The classic low-fat position, i.e., reducing fat intake, adopted since the 1980s by most governments and medical organizations. This approach is based on the fact that fats are twice as caloric as carbohydrates (and therefore more obesigenic) and that saturated fats increase LDL cholesterol levels, a major risk factor for cardiovascular disease. As a result, the main goal of healthy eating should be to reduce the total fat intake (especially saturated fat) and replace it with carbohydrate sources (vegetables, bread, cereals, rice and pasta). An argument in favour of this type of diet is that many cultures that have a low-fat diet (Okinawa’s inhabitants, for example) have exceptional longevity.
  • The low-carb position, currently very popular as evidenced by the ketogenic diet, advocates exactly the opposite, i.e., reducing carbohydrate intake and increasing fat intake. This approach is based on several observations showing that increased carbohydrate consumption in recent years coincides with a phenomenal increase in the incidence of obesity in North America, suggesting that it is sugars and not fats that are responsible for excess weight and the resulting chronic diseases (cardiovascular disease, type 2 diabetes, some cancers). One argument in favour of this position is that an increase in insulin in response to carbohydrate consumption can actually promote fat accumulation and that low-carb diets are generally more effective at promoting weight loss, at least in the short term.

Reaching a consensus from two such extreme positions is not easy! Nevertheless, when we look at different forms of carbohydrates and fat in our diet, the reality is much more nuanced, and it becomes possible to see that a number of points are common to both approaches. By critically analyzing the data currently available, the authors have managed to identify at least five major principles they all agree on:

1) Eating unprocessed foods of good nutritional quality helps to stay healthy without having to worry about the amount of fat or carbohydrate consumed.
A common point of the low-fat and low-carb approaches is that each one is convinced it represents the optimal diet for health. In fact, a simple observation of food traditions around the world shows that there are several food combinations that allow you to live longer and be healthy. For example, Japan, France and Israel are the industrialized countries with the two lowest mortality rates from cardiovascular disease (110, 126 and 132 deaths per 100,000, respectively) despite considerable differences in the proportion of carbohydrates and fat from their diet.

It is the massive influx of ultra-processed industrial foods high in fat, sugar and salt that is the major cause of the obesity epidemic currently affecting the world’s population. All countries, without exception, that have shifted their traditional consumption of natural foods to processed foods have seen the incidence of obesity, type 2 diabetes, and cardiovascular disease affecting their population increase dramatically. The first step in combating diet-related chronic diseases is therefore not so much to count the amount of carbohydrate or fat consumed, but rather to eat “real” unprocessed foods. The best way to do this is simply to focus on plant-based foods such as fruits, vegetables, legumes and whole-grain cereals, while reducing those of animal origin and minimizing processed industrial foods such as deli meats, sugary drinks, and other junk food products.

2) Replace saturated fat with unsaturated fat.
The Seven Countries Study showed that the incidence of cardiovascular disease was closely correlated with saturated fat intake (mainly found in foods of animal origin such as meats and dairy products). A large number of studies have shown that replacing these saturated fats with unsaturated fats (e.g., vegetable oils) is associated with a significant reduction in the risk of cardiovascular events and premature mortality. A reduction in saturated fat intake, combined with an increased intake of high quality unsaturated fat (particularly monounsaturated and omega-3 polyunsaturated), is the optimal combination to prevent cardiovascular disease and reduce the risk of premature mortality.

These benefits can be explained by the many negative effects of an excess of saturated fat on health. In addition to increasing LDL cholesterol levels, an important risk factor for cardiovascular disease, a high intake of saturated fat causes an increase in the production of inflammatory molecules, an alteration of the function of the mitochondria (the power plants of the cell), and a disturbance of the normal composition of the intestinal microbiome. Not to mention that the organoleptic properties of a diet rich in saturated fats reduce the feeling of satiety and encourage overconsumption of food and accumulation of excess fat, a major risk factor for cardiovascular disease, type 2 diabetes and some cancers.

3) Replace refined carbohydrates with complex carbohydrates.
The big mistake of the “anti-fat crusade” of the ’80s and ’90s was to believe that any carbohydrate source, even the sugars found in processed industrial foods (refined flours, added sugars), was preferable to saturated fats. This belief was unjustified, as subsequent studies have demonstrated beyond a doubt that these refined sugars promote atherosclerosis and can even triple the risk of cardiovascular mortality when consumed in large quantities. In other words, any benefit that can come from reducing saturated fat intake is immediately countered by the negative effect of refined sugars on the cardiovascular system. On the other hand, when saturated fats are replaced by complex carbohydrates (whole grains, for example), there is actually a significant decrease in the risk of cardiovascular events.

Another reason to avoid foods containing refined or added sugars is that they have low nutritional value and cause significant variations in blood glucose and insulin secretion. These metabolic disturbances promote excess weight and the development of insulin resistance and dyslipidemia, conditions that significantly increase the risk of cardiovascular events. Conversely, increased intake of complex carbohydrates in whole-grain cereals, legumes, and other vegetables helps keep blood glucose and insulin levels stable. In addition, unrefined plant foods represent an exceptional source of vitamins, minerals and antioxidant phytochemicals essential for maintaining health. Their high fibre content also allows the establishment of a diverse intestinal microbiome, whose fermentation activity generates short-chain fatty acids with anti-inflammatory and anticancer properties.

4) A high-fat low-carb diet may be beneficial for people who have disorders of carbohydrate metabolism.
In recent years, research has shown that people who have normal sugar metabolism may tolerate a higher proportion of carbohydrates, while those with glucose intolerance or insulin resistance may benefit from adopting a low-carb diet richer in fat. This seems particularly true for people with diabetes and prediabetes. For example, an Italian study of people with type 2 diabetes showed that a diet high in monounsaturated fat (42% of total calories) was more effective in reducing the accumulation of fat in the liver (a major contributor to the development of type 2 diabetes) than a diet low in fat (28% of total calories).

These benefits seem even more pronounced for the ketogenic diet, in which the consumption of carbohydrates is reduced to a minimum (<50 g per day). Studies show that in people with a metabolic syndrome, this type of diet can generate a fat loss (total and abdominal) greater than a hypocaloric diet low in fat, as well as a higher reduction of blood triglycerides and several markers of inflammation. In people with type 2 diabetes, a recent study shows that in the majority of patients, the ketogenic diet is able to reduce the levels of glycated haemoglobin (a marker of chronic hyperglycaemia) to a normal level, and this without drugs other than metformin. Even people with type 1 diabetes can benefit considerably from a ketogenic diet: a study of 316 children and adults with this disease shows that the adoption of a ketogenic diet allows an exceptional control of glycemia and the maintenance of excellent metabolic health over a 2-year period.

5) A low-carb or ketogenic diet does not require a high intake of proteins and fats of animal origin.
Several forms of low carbohydrate or ketogenic diets recommend a high intake of animal foods (butter, meat, charcuteries, etc.) high in saturated fats. As mentioned above, these saturated fats have several negative effects (increase of LDL, inflammation, etc.), and one can therefore question the long-term impact of this type of low-carb diet on the risk of cardiovascular disease. Moreover, a study recently published in The Lancet indicates that people who consume little carbohydrates (<40% of calories), but a lot of fat and protein of animal origin, have a significantly increased risk of premature death. For those wishing to adopt a ketogenic diet, it is therefore important to realize that it is quite possible to reduce the proportion of carbohydrates in the diet by substituting cereals and other carbohydrate sources with foods rich in unsaturated fats like vegetable oils, vegetables rich in fat (nuts, seeds, avocado, olives) as well as fatty fish.

In short, the current debate about the merits of low-fat and low-carb diets is not really relevant: for the vast majority of the population, several combinations of fat and carbohydrate make it possible to remain in good health and at low risk of chronic diseases, provided that these fats and carbohydrates come from foods of good nutritional quality. It is the overconsumption of ultra-processed foods, high in fat and refined sugars, which is responsible for the dramatic rise in food-related diseases, particularly obesity and type 2 diabetes. Restricting the consumption of these industrial foods and replacing them with “natural” foods, especially those of plant origin, remains the best way to reduce the risk of developing these diseases. On the other hand, for overweight individuals with metabolic syndrome or type 2 diabetes, currently available scientific evidence suggests that a reduction in carbohydrate intake by adopting low-carb and ketogenic diets could be beneficial.