• Twenty volunteers were fed a low-fat or low-carbohydrate diet in turn for two weeks.
  • Participants on the low-fat diet consumed an average of nearly 700 fewer calories per day than with the low-carbohydrate diet, a decrease correlated with a greater loss of body fat.
  • Compared to the low-carbohydrate diet, the low-fat diet also led to lower cholesterol levels, reduced chronic inflammation, and lowered heart rate and blood pressure.
  • Overall, these results suggest that a diet mainly composed of plants and low in fat is optimal for cardiovascular health, both for its superiority in reducing calorie intake and for its positive impact on several risk factors for cardiovascular disease.

It is estimated that there are currently around 2 billion overweight people in the world, including 600 million who are obese. These statistics are truly alarming because it is clearly established that excess fat promotes the development of several diseases that decrease healthy life expectancy, including cardiovascular disease, type 2 diabetes, and several types of cancer. Identifying the factors responsible for this high prevalence of overweight and the possible ways to reverse this trend as quickly as possible is therefore essential to improve the health of the population and avoid unsustainable pressures on public health systems in the near future.

Energy imbalance
The root cause of overweight, and obesity in particular, is a calorie intake that exceeds the body’s energy needs. To lose weight, therefore, it is essentially a matter of restoring the balance between the calories ingested and the calories expended.

It might seem simple in theory, but in practice most people find it extremely difficult to lose weight. On the one hand, it is much easier to gain weight than to lose weight. During evolution, we have had to deal with periods of prolonged food shortages (and even starvation, in some cases) and our metabolism has adapted to these deficiencies by becoming extremely efficient at accumulating and conserving energy in the form of fat. On the other hand, the environment in which we currently live strongly encourages overconsumption of food. We are literally overwhelmed by an endless variety of attractive food products, which are often inexpensive, easily accessible, and promoted by very aggressive marketing that encourages their consumption. The current epidemic of overweight and obesity thus reflects our biological predisposition to accumulate reserves in the form of fat, a predisposition that is exacerbated by the obesogenic environment that surrounds us.

Eating less to restore balance
The body’s innate tendency to keep energy stored in reserve as fat makes it extremely difficult to lose weight by “burning” those excess calories by increasing the level of physical activity. For example, a person who eats a simple piece of sugar pie (400 calories) will have to walk about 6.5 km to completely burn off those calories, which, of course, is difficult to do on a daily basis. This does not mean that exercise is completely useless for weight loss. Research in recent years shows that exercise can specifically target certain fat stores, especially in the abdominal area. Studies also show that regular physical activity is very important for long-term maintenance of the weight lost from a low-calorie diet. However, there is no doubt that it is first and foremost the calories consumed that are the determining factors in weight gain. Moreover, contrary to what one might think, levels of physical activity have hardly changed for the last thirty years in industrialized countries, and the phenomenal increase in the number of overweight people is therefore mainly a consequence of overconsumption of food. Exercise is essential for the prevention of all chronic diseases and for the maintenance of general good health, but its role in weight loss is relatively minor. For overweight people, the only realistic way to lose weight significantly, and especially to maintain these losses over prolonged periods, is thus to reduce calorie intake.

Less sugar or less fat?
How do we get there? First, it’s important to realize that the surge in the number of overweight people has coincided with a greater availability of foods high in sugar or fat (and sometimes both). All countries in the world, without exception, that have adopted this type of diet have seen their overweight rates skyrocket, so it is likely that this change in eating habits plays a major role in the current obesity epidemic.

However, the respective contributions of sugar and fat to this increase in caloric intake and overweight are still the subjectof vigorous debate:

1) On the one hand, it has been proposed that foods high in fat are particularly obesogenic, since fats are twice as high in calories as carbohydrates, are less effective in causing a feeling of satiety, and improve the organoleptic properties of foods, which generally encourages (often unconscious) overconsumption of food. Therefore, the best way to avoid overeating and becoming overweight would be to reduce the total fat intake (especially saturated fat due to its negative impact on LDL-cholesterol levels) and replace it with complex carbohydrates (vegetables, legumes, whole-grain cereals). This is colloquially called the low-fat approach, advocated for example by the Ornish diet.

2) On the other hand, the exact opposite is proposed, i.e. that it would be mainly carbohydrates that would contribute to overconsumption of food and to the increase in the incidence of obesity. According to this model, carbohydrates in foods in the form of free sugars or refined flours cause insulin levels to rise markedly, causing massive energy storage in adipose tissue. As a result, fewer calories remain available in the circulation for use by the rest of the body, causing increased appetite and overeating to compensate for this lack. In other words, it wouldn’t be because we eat too much that we get fat, but rather because we are too fat we eat too much.

3) By preventing excessive fluctuations in insulin levels, a diet low in carbohydrates would thus limit the anabolic effect of this hormone and, therefore, prevent overeating and the accumulation of excess fat.

Less fat on the menu, fewer calories ingested
To compare the impact of low-carb and low-fat diets on calorie intake, Dr. Kevin Hall’s group (NIH) recruited 20 volunteers who were fed each of these diets in turn for two weeks. The strength of this type of cross-study is that each participant consumes both types of diets and that their effects can therefore be compared directly on the same person.

As shown in Figure 1, the two diets studied were completely opposite of each other, with 75% of the calories in the low-fat (LF) diet coming from carbohydrates versus only 10% from fat, while in the low-carb (LC) diet, 75% of calories were in the form of fat, compared to only 10% from carbohydrates. The LF diet under study consisted exclusively of foods of plant origin (fruits, vegetables, legumes, root vegetables, soy products, whole grains, etc.), while the LC diet contained mainly (82%) animal foods (meat, poultry, fish, eggs, dairy products).

Figure 1. Comparison of the amounts of carbohydrates, fats and proteins present in the low-carbohydrate (LC) and low-fat (LF) diets consumed by study participants. Adapted from Hall et al. (2021).

The study shows that there is indeed a big difference between the two types of diets in the number of calories consumed by participants (Figure 2). Over a two-week period, participants who ate an LF (low-fat) diet consumed an average of nearly 700 calories (kcal) per day less than an LC (low-carbohydrate) diet. This difference in calorie intake is observed for all meals, both at breakfast (240 calories less for the LF diet), at lunch (143 calories less), at dinner (195 calories less), and during snacks taken between meals (128 calories less). This decrease is not caused by a difference in the appreciation of the two diets by the participants, as parallel analyses did not find any difference in the level of appetite of the participants, nor in the degree of satiety and satisfaction generated by the consumption of either diet. However, the LF diet was composed exclusively of plant-based foods and therefore much richer in non-digestible fibres (60 g per day compared to only 20 g for the LC diet), which greatly reduce the energy density of meals (quantity of calories per g of food) compared to the high-fat LC diet. It is therefore very likely that this difference in energy density contributes to the lower calorie intake observed for the low-fat diet.

Overall, these results indicate that a diet consisting of plants, and thus low in fat and high in complex carbohydrates, is more effective than a diet consisting mainly of animal products, high in fat and low in carbohydrates, to limit calorie intake.

Figure 2. Comparison of the daily calorie intake of participants on a low-carbohydrate (LC) or low-fat (LF) diet. From Hall et al. (2021).

Weight loss
Despite the significant difference in calorie intake observed between the two diets, their respective impact on short-term weight loss is more nuanced. At first glance, the LC diet appeared to be more effective than the LF diet in causing rapid weight loss, with about 1 kg lost on average in the first week and almost 2 kg after two weeks, compared to only 1 kg after two weeks of the LF diet (Figure 3). However, further analysis revealed that the weight loss caused by the LC diet was mainly in the form of lean mass (protein, water, glycogen), while this diet had no significant impact on fat loss during this period. Conversely, the LF diet had no effect on this lean body mass, but did cause a significant decrease in body fat, to around 1 kg after two weeks. In other words, only the LF diet caused a loss of body fat during the study period, which strongly suggests that the decrease in calorie intake made possible by this type of diet may facilitate the maintenance of astable body weight and could even promote weight loss in overweight people.

Figure 3. Comparison of changes in body weight (top), lean mass (middle), and body fat (bottom) caused by low-carbohydrate and low-fat diets. From Hall et al. (2021).

Cardiovascular risk factors
In addition to promoting lower calorie intake and fat loss, the LF diet also appears to be superior to the LC diet in terms of its impact on several cardiovascular risk factors (Table 1):

Cholesterol. It is well established that LDL cholesterol levels increase in response to a high intake of saturated fat (see our article on the issue). It is therefore not surprising that the LF diet, which contains only 2% of all calories as saturated fat, causes a significant decrease in cholesterol, both in terms of total cholesterol and LDL cholesterol. At first glance, the high-fat LC diet (containing 30% of the daily calorie intake as saturated fat) does not appear to have a major effect on LDL cholesterol; however, it should be noted that this diet significantly modifies the distribution of LDL cholesterol particles, in particular with a significant increase in small and dense LDL particles. Several studies have reported that these small, dense LDL particles infiltrate artery walls more easily and also appear to oxidize more easily, two key events in the development and progression of atherosclerosis. In sum, just two weeks of a high-fat LC diet was enough to significantly (and negatively) alter the atherogenic profile of participants, which may raise doubts about the long-term effects of this type of diet on cardiovascular health.

Table 1. Variations in certain risk factors for cardiovascular disease following a diet low in carbohydrates or low in fat. From Hall et al. (2021).

Branched-chain amino acids. Several recent studies have shown a very clear association between blood levels of branched-chain amino acids (leucine, isoleucine and valine) and an increased risk of metabolic syndrome and type 2 diabetes, two very important risk factors for cardiovascular diseases. In this sense, it is very interesting to note that the levels of these amino acids are almost twice as high after two weeks of the LC diet compared to the LF diet, suggesting a positive effect of a diet rich in plants and poor in fats in the prevention of these disorders.

Inflammation. Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries and can lead to the development of cardiovascular events such as myocardial infarction and stroke. Clinically, this level of inflammation is often determined by measuring levels of high-sensitivity C-reactive protein (hsCRP), a protein made by the liver and released into the blood in response to inflammatory conditions. As shown in Table 1, the LF diet significantly decreases the levels of this inflammatory marker, another positive effect that argues in favour of a plant-rich diet for the prevention of cardiovascular disease.

In addition to these laboratory data, the researchers noted that participants who were fed the LF diet had a slower heart rate (73 vs. 77 beats/min) as well as lower blood pressure (112/67 vs. 116/69 mm Hg) than observed following the LC diet. In the latter case, this difference could be related, at least in part, to the much higher sodium consumption in the LC diet compared to the LF diet (5938 vs. 3725 mg/day).

All of these results confirm the superiority of a diet mainly composed of plants on all the factors involved in cardiovascular health, whether in terms of lipid profile, chronic inflammation, or adequate control of calorie intake necessary to maintain body weight.

Partager cet article: