Reducing calorie intake by eating more plants

Reducing calorie intake by eating more plants

OVERVIEW

  • Twenty volunteers were fed a low-fat or low-carbohydrate diet in turn for two weeks.
  • Participants on the low-fat diet consumed an average of nearly 700 fewer calories per day than with the low-carbohydrate diet, a decrease correlated with a greater loss of body fat.
  • Compared to the low-carbohydrate diet, the low-fat diet also led to lower cholesterol levels, reduced chronic inflammation, and lowered heart rate and blood pressure.
  • Overall, these results suggest that a diet mainly composed of plants and low in fat is optimal for cardiovascular health, both for its superiority in reducing calorie intake and for its positive impact on several risk factors for cardiovascular disease.

It is estimated that there are currently around 2 billion overweight people in the world, including 600 million who are obese. These statistics are truly alarming because it is clearly established that excess fat promotes the development of several diseases that decrease healthy life expectancy, including cardiovascular disease, type 2 diabetes, and several types of cancer. Identifying the factors responsible for this high prevalence of overweight and the possible ways to reverse this trend as quickly as possible is therefore essential to improve the health of the population and avoid unsustainable pressures on public health systems in the near future.

Energy imbalance
The root cause of overweight, and obesity in particular, is a calorie intake that exceeds the body’s energy needs. To lose weight, therefore, it is essentially a matter of restoring the balance between the calories ingested and the calories expended.

It might seem simple in theory, but in practice most people find it extremely difficult to lose weight. On the one hand, it is much easier to gain weight than to lose weight. During evolution, we have had to deal with periods of prolonged food shortages (and even starvation, in some cases) and our metabolism has adapted to these deficiencies by becoming extremely efficient at accumulating and conserving energy in the form of fat. On the other hand, the environment in which we currently live strongly encourages overconsumption of food. We are literally overwhelmed by an endless variety of attractive food products, which are often inexpensive, easily accessible, and promoted by very aggressive marketing that encourages their consumption. The current epidemic of overweight and obesity thus reflects our biological predisposition to accumulate reserves in the form of fat, a predisposition that is exacerbated by the obesogenic environment that surrounds us.

Eating less to restore balance
The body’s innate tendency to keep energy stored in reserve as fat makes it extremely difficult to lose weight by “burning” those excess calories by increasing the level of physical activity. For example, a person who eats a simple piece of sugar pie (400 calories) will have to walk about 6.5 km to completely burn off those calories, which, of course, is difficult to do on a daily basis. This does not mean that exercise is completely useless for weight loss. Research in recent years shows that exercise can specifically target certain fat stores, especially in the abdominal area. Studies also show that regular physical activity is very important for long-term maintenance of the weight lost from a low-calorie diet. However, there is no doubt that it is first and foremost the calories consumed that are the determining factors in weight gain. Moreover, contrary to what one might think, levels of physical activity have hardly changed for the last thirty years in industrialized countries, and the phenomenal increase in the number of overweight people is therefore mainly a consequence of overconsumption of food. Exercise is essential for the prevention of all chronic diseases and for the maintenance of general good health, but its role in weight loss is relatively minor. For overweight people, the only realistic way to lose weight significantly, and especially to maintain these losses over prolonged periods, is thus to reduce calorie intake.

Less sugar or less fat?
How do we get there? First, it’s important to realize that the surge in the number of overweight people has coincided with a greater availability of foods high in sugar or fat (and sometimes both). All countries in the world, without exception, that have adopted this type of diet have seen their overweight rates skyrocket, so it is likely that this change in eating habits plays a major role in the current obesity epidemic.

However, the respective contributions of sugar and fat to this increase in caloric intake and overweight are still the subjectof vigorous debate:

1) On the one hand, it has been proposed that foods high in fat are particularly obesogenic, since fats are twice as high in calories as carbohydrates, are less effective in causing a feeling of satiety, and improve the organoleptic properties of foods, which generally encourages (often unconscious) overconsumption of food. Therefore, the best way to avoid overeating and becoming overweight would be to reduce the total fat intake (especially saturated fat due to its negative impact on LDL-cholesterol levels) and replace it with complex carbohydrates (vegetables, legumes, whole-grain cereals). This is colloquially called the low-fat approach, advocated for example by the Ornish diet.

2) On the other hand, the exact opposite is proposed, i.e. that it would be mainly carbohydrates that would contribute to overconsumption of food and to the increase in the incidence of obesity. According to this model, carbohydrates in foods in the form of free sugars or refined flours cause insulin levels to rise markedly, causing massive energy storage in adipose tissue. As a result, fewer calories remain available in the circulation for use by the rest of the body, causing increased appetite and overeating to compensate for this lack. In other words, it wouldn’t be because we eat too much that we get fat, but rather because we are too fat we eat too much.

3) By preventing excessive fluctuations in insulin levels, a diet low in carbohydrates would thus limit the anabolic effect of this hormone and, therefore, prevent overeating and the accumulation of excess fat.

Less fat on the menu, fewer calories ingested
To compare the impact of low-carb and low-fat diets on calorie intake, Dr. Kevin Hall’s group (NIH) recruited 20 volunteers who were fed each of these diets in turn for two weeks. The strength of this type of cross-study is that each participant consumes both types of diets and that their effects can therefore be compared directly on the same person.

As shown in Figure 1, the two diets studied were completely opposite of each other, with 75% of the calories in the low-fat (LF) diet coming from carbohydrates versus only 10% from fat, while in the low-carb (LC) diet, 75% of calories were in the form of fat, compared to only 10% from carbohydrates. The LF diet under study consisted exclusively of foods of plant origin (fruits, vegetables, legumes, root vegetables, soy products, whole grains, etc.), while the LC diet contained mainly (82%) animal foods (meat, poultry, fish, eggs, dairy products).

Figure 1. Comparison of the amounts of carbohydrates, fats and proteins present in the low-carbohydrate (LC) and low-fat (LF) diets consumed by study participants. Adapted from Hall et al. (2021).

The study shows that there is indeed a big difference between the two types of diets in the number of calories consumed by participants (Figure 2). Over a two-week period, participants who ate an LF (low-fat) diet consumed an average of nearly 700 calories (kcal) per day less than an LC (low-carbohydrate) diet. This difference in calorie intake is observed for all meals, both at breakfast (240 calories less for the LF diet), at lunch (143 calories less), at dinner (195 calories less), and during snacks taken between meals (128 calories less). This decrease is not caused by a difference in the appreciation of the two diets by the participants, as parallel analyses did not find any difference in the level of appetite of the participants, nor in the degree of satiety and satisfaction generated by the consumption of either diet. However, the LF diet was composed exclusively of plant-based foods and therefore much richer in non-digestible fibres (60 g per day compared to only 20 g for the LC diet), which greatly reduce the energy density of meals (quantity of calories per g of food) compared to the high-fat LC diet. It is therefore very likely that this difference in energy density contributes to the lower calorie intake observed for the low-fat diet.

Overall, these results indicate that a diet consisting of plants, and thus low in fat and high in complex carbohydrates, is more effective than a diet consisting mainly of animal products, high in fat and low in carbohydrates, to limit calorie intake.

Figure 2. Comparison of the daily calorie intake of participants on a low-carbohydrate (LC) or low-fat (LF) diet. From Hall et al. (2021).

Weight loss
Despite the significant difference in calorie intake observed between the two diets, their respective impact on short-term weight loss is more nuanced. At first glance, the LC diet appeared to be more effective than the LF diet in causing rapid weight loss, with about 1 kg lost on average in the first week and almost 2 kg after two weeks, compared to only 1 kg after two weeks of the LF diet (Figure 3). However, further analysis revealed that the weight loss caused by the LC diet was mainly in the form of lean mass (protein, water, glycogen), while this diet had no significant impact on fat loss during this period. Conversely, the LF diet had no effect on this lean body mass, but did cause a significant decrease in body fat, to around 1 kg after two weeks. In other words, only the LF diet caused a loss of body fat during the study period, which strongly suggests that the decrease in calorie intake made possible by this type of diet may facilitate the maintenance of astable body weight and could even promote weight loss in overweight people.

Figure 3. Comparison of changes in body weight (top), lean mass (middle), and body fat (bottom) caused by low-carbohydrate and low-fat diets. From Hall et al. (2021).

Cardiovascular risk factors
In addition to promoting lower calorie intake and fat loss, the LF diet also appears to be superior to the LC diet in terms of its impact on several cardiovascular risk factors (Table 1):

Cholesterol. It is well established that LDL cholesterol levels increase in response to a high intake of saturated fat (see our article on the issue). It is therefore not surprising that the LF diet, which contains only 2% of all calories as saturated fat, causes a significant decrease in cholesterol, both in terms of total cholesterol and LDL cholesterol. At first glance, the high-fat LC diet (containing 30% of the daily calorie intake as saturated fat) does not appear to have a major effect on LDL cholesterol; however, it should be noted that this diet significantly modifies the distribution of LDL cholesterol particles, in particular with a significant increase in small and dense LDL particles. Several studies have reported that these small, dense LDL particles infiltrate artery walls more easily and also appear to oxidize more easily, two key events in the development and progression of atherosclerosis. In sum, just two weeks of a high-fat LC diet was enough to significantly (and negatively) alter the atherogenic profile of participants, which may raise doubts about the long-term effects of this type of diet on cardiovascular health.

Table 1. Variations in certain risk factors for cardiovascular disease following a diet low in carbohydrates or low in fat. From Hall et al. (2021).

Branched-chain amino acids. Several recent studies have shown a very clear association between blood levels of branched-chain amino acids (leucine, isoleucine and valine) and an increased risk of metabolic syndrome and type 2 diabetes, two very important risk factors for cardiovascular diseases. In this sense, it is very interesting to note that the levels of these amino acids are almost twice as high after two weeks of the LC diet compared to the LF diet, suggesting a positive effect of a diet rich in plants and poor in fats in the prevention of these disorders.

Inflammation. Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries and can lead to the development of cardiovascular events such as myocardial infarction and stroke. Clinically, this level of inflammation is often determined by measuring levels of high-sensitivity C-reactive protein (hsCRP), a protein made by the liver and released into the blood in response to inflammatory conditions. As shown in Table 1, the LF diet significantly decreases the levels of this inflammatory marker, another positive effect that argues in favour of a plant-rich diet for the prevention of cardiovascular disease.

In addition to these laboratory data, the researchers noted that participants who were fed the LF diet had a slower heart rate (73 vs. 77 beats/min) as well as lower blood pressure (112/67 vs. 116/69 mm Hg) than observed following the LC diet. In the latter case, this difference could be related, at least in part, to the much higher sodium consumption in the LC diet compared to the LF diet (5938 vs. 3725 mg/day).

All of these results confirm the superiority of a diet mainly composed of plants on all the factors involved in cardiovascular health, whether in terms of lipid profile, chronic inflammation, or adequate control of calorie intake necessary to maintain body weight.

Electronic cigarettes cause much less inflammation than tobacco

Electronic cigarettes cause much less inflammation than tobacco

OVERVIEW

  • Cigarette smoke causes chronic inflammation that significantly increases the risk of lung and cardiovascular disease.
  • Two recent studies show that this inflammation can be considerably reduced by replacing cigarettes with e-cigarettes.
  • Smokers can therefore drastically reduce the damage caused by cigarette smoke and the risk of smoking-related illnesses by using e-cigarettes as a source of nicotine.

It is now well established that smokers have a reduced life expectancy of around 10 years compared to non-smokers. This dramatic increase in the risk of premature mortality is due to the repeated exposure of smokers to the thousands of toxic and carcinogenic substances that are generated during the combustion of tobacco leaves (polycyclic aromatic hydrocarbons and nitrosamines, among others). For example, it is estimated that each pack of cigarettes contains enough carcinogenic compounds to cause two mutations in the DNA of lung cells, so decades of smoking results in the accumulation of several thousand of these mutations and dramatically increases (about 40 times) the risk of lung cancer.

Pro-inflammatory smoke
Another factor that contributes to the harmfulness of tobacco is the chronic inflammation caused by the many toxic compounds found in cigarette smoke. Locally, this inflammation damages cells in the airways and greatly increases the risk of developing chronic obstructive pulmonary disease (e.g. emphysema). But the damage caused by this inflammation is not limited to the lungs. Following inhalation of cigarette smoke, the toxic compounds rapidly diffuse into the pulmonary capillaries and can then spread throughout the body via the bloodstream. A climate of generalized chronic inflammation is then created, characterized by an increase in several inflammatory markers (IL-6, CRP, ICAM) and the recruitment of immune cells to the surface of blood vessels, two phenomena that contribute to the development of atherosclerosis.

The blood vessels that supply the heart (coronary arteries) are particularly vulnerable to this inflammation. Since the heart is closely associated with the lungs, it is the first organ to receive blood that has been in contact with cigarette smoke and is therefore necessarily exposed to higher concentrations of toxic compounds.

The consequences of this proximity are disastrous. Studies show that people who smoke a pack a day have a 5 times higher risk of myocardial infarction compared to those who have never smoked, and smoking is estimated to be responsible for about 20% of all coronary heart disease deaths. So, even though we mainly talk about the major impact of tobacco on the risk of suffering from lung cancer, we must not forget that cardiovascular diseases remain the main cause of death associated with smoking. Of all the actions a person can take to improve their cardiovascular health (and overall health), quitting smoking is by far the most important.

Reversible damage
The good news is that this damage of smoking on cardiovascular health can be reversed by quitting. Studies show that former smokers see their risk of cardiovascular accident decrease by 40% in the first five years after quitting and becomes similar to that of non-smokers after 10–15 years. Smoking cessation is beneficial at any age, but is particularly effective before the age of 40, with a 90% reduction in the risk of premature death from smoking.

Quitting smoking is difficult, with only 5% of people able to remain smoke-free after one year. However, several recent data show that this smoking cessation success rate can be considerably increased among smokers who opt for e-cigarettes. For example, a randomized clinical trial recently showed that e-cigarettes can double the effectiveness of smoking cessation compared to traditional approaches based on nicotine replacement therapy. A Cochrane review of 50 studies (including 26 randomized trials) with a total of 12,430 participants comes to a similar conclusion.

Reducing damage
In addition to facilitating smoking cessation in the longer term, adopting e-cigarettes also has the advantage of immediately reducing the damage caused by tobacco. Remember that in an e-cigarette, a nicotine solution is heated to 80°C (compared to temperatures around 900°C in a cigarette), and therefore the vapour generated does not contain carbon monoxide, nor the thousands of toxic combustion products found in cigarette smoke. According to a recent study by the Institut Pasteur, the vapour emanating from e-cigarettes contains less than 1% of the toxins present in cigarette smoke, and consequently substantially reduce smokers’ exposure to these toxic compounds (see our article on this subject).

Two recent studies show that this drastic decrease in the amount of toxic compounds in e-cigarette vapour correlates with a significant decrease in inflammation normally observed in response to cigarette smoke. In the first of these studies, the researchers compared the levels of different inflammatory markers (hsCRP, IL-6, sICAM) or oxidative stress (urinary 8-isoprostane) present in non-smokers, vapers, cigarette smokers, and mixed users (vapers and smokers). As shown in Figure 1, while smoking causes a significant increase in the levels of all markers examined, these increases are much smaller, and in some cases (IL-6) even completely abolished, among exclusive e-cigarette users. Replacing tobacco cigarettes with an e-cigarette can therefore substantially decrease the inflammatory response and, in turn, reduce the risk of cardiovascular disease. However, the study clearly shows that this reduction in inflammation is not at all observed in vapers who continue to smoke cigarettes at the same time. To truly reduce the damage caused by smoking, e-cigarettes must therefore completely replace cigarettes and not simply serve to reduce the number of cigarettes smoked in a day.

Figure 1. Change in the levels of different markers of inflammation and oxidative stress in vapers and smokers. From Stokes et al. (2020). hsCRP: high sensitivity C-reactive protein; IL-6: interleukin-6; sICAM: soluble intercellular adhesion molecule.

The other study looked at the impact of e-cigarettes on the expression of inflammatory proteins by monocytes, a class of white blood cells involved in the innate immune response. Over-activation of these cells (by toxic compounds like cigarette smoke, for example) has been shown to trigger an inflammatory response that plays an important role in the initiation and progression of atherosclerosis.

Using blood samples taken from non-smokers, smokers, and vapers, the researchers examined by flow cytometry the profiles of inflammatory proteins (caspase-1, IL-6 receptor, TLR4) present in circulating monocytes in each category of volunteers. Unsurprisingly, they noted that the expression of all of these inflammatory proteins was higher in smokers, about 4 times higher on average than in non-smokers. However, this inflammatory signature was completely absent in vapers, suggesting once again that the elimination of cigarettes in favour of e-cigarettes leads to concrete health benefits for smokers. This is consistent with a recent randomized controlled trial that showed that the transition of smokers to e-cigarettes is accompanied by a rapid improvement (in just 1 month) in the health of the blood vessels.

This study shows once again how e-cigarettes allow smokers to significantly reduce their exposure to the many toxic substances in cigarette smoke and are therefore an extremely useful tool in the fight against diseases caused by smoking.

Effects of cold on cardiovascular health

Effects of cold on cardiovascular health

OVERVIEW

  • Exposure to cold causes a contraction of blood vessels as well as an increase in blood pressure, heart rate, and the work of the heart muscle.
  • The combination of cold and exercise further increases stress on the cardiovascular system.
  • Cold temperatures are associated with increased cardiac symptoms (angina, arrhythmias) and an increased incidence of myocardial infarction and sudden cardiac death.
  • Patients with coronary artery disease should limit exposure to cold and dress warmly and cover their face when exercising.

Can the sometimes biting cold of our winters affect our overall health and our cardiovascular health in particular? For an exhaustive review of the literature on the effects of cold on health in general, see the summary report (in French only) recently published by the Institut national de santé publique du Québec (INSPQ). In this article, we will focus on the main effects of cold on the cardiovascular system and more specifically on the health of people with cardiovascular disease.

Brief and prolonged exposure to cold both affect the cardiovascular system, and exercise in cold weather further increases stress on the heart and arteries. Numerous epidemiological studies have shown that cardiovascular disease and mortality increase when the ambient temperature is cold and during cold spells. The winter season is associated with a greater number of cardiac symptoms (angina, arrhythmias) and cardiovascular events such as hypertensive crisis, deep venous thrombosis, pulmonary embolism, aortic ruptures and dissections, stroke, intracerebral hemorrhage, heart failure, atrial fibrillation, ventricular arrhythmia, angina pectoris, acute myocardial infarction, and sudden cardiac death.

Mortality from cold
Globally, more temperature-related deaths were caused by cold (7.29%) than heat (0.42%). For Canada, 4.46% of deaths were attributable to cold (2.54% for Montreal), and 0.54% to heat (0.68% for Montreal).

Intuition may lead us to believe that it is during periods of extreme cold that more adverse health effects occur, but the reality is quite different. According to a study that analyzed 74,225,200 deaths that occurred between 1985 and 2012 in 13 large countries on 5 continents, extreme temperatures (cold or hot) accounted for only 0.86% of all deaths, while the majority of cold-related deaths occurred at moderately cold temperatures (6.66%).

Acute effects of cold on the cardiovascular system of healthy people

Blood pressure. The drop in skin temperature upon exposure to cold is detected by skin thermoreceptors that stimulate the sympathetic nervous system and induce a vasoconstriction reflex (decrease in the diameter of the blood vessels). This peripheral vasoconstriction prevents heat loss from the surface of the body and has the effect of increasing systolic (5–30 mmHg) and diastolic (5–15 mmHg) blood pressure.

Heart rate. It is not greatly affected by exposure of the body to cold air, but it increases rapidly when, for example, the hand is dipped in ice water (“cold test” used to make certain diagnoses, such as Raynaud’s disease) or when very cold air is inhaled. Cold air usually causes a slight increase in heart rate in the range of 5 to 10 beats per minute.

Risk of atheromatous plaque rupture?
Post-mortem studies have shown that rupture of atheroma plaques (deposits of lipids on the lining of the arteries) is the immediate cause of over 75% of acute myocardial infarctions. Could cold stress promote the rupture of atheromatous plaques? In a laboratory study, mice exposed to cold in a cold room (4°C) for 8 weeks saw their blood LDL cholesterol level and the number of plaques increase compared to mice in the control group (room at 30°C). Furthermore, it is known that exposure to cold induces aggregation of platelets in vitro and increases coagulation factors in vivo in patients during colder days (< 20°C) compared to warmer days (> 20°C). Combined, these cold effects could help promote plaque rupture, but to date no study has been able to demonstrate this.

Risk of cardiac arrhythmias
Arrhythmias are a common cause of sudden cardiac death. Even in healthy volunteers, the simple act of dipping a hand in cold water while holding the breath can cause cardiac arrhythmias (nodal and supraventricular tachycardias). Could cold promote sudden death in people at risk for or with heart disease? Since arrhythmias cannot be detected post-mortem, it is very difficult to prove such a hypothesis. If it turns out that exposure to cold air can promote arrhythmias, people with coronary artery disease may be vulnerable to the cold since the arrhythmia would amplify the oxygenated blood deficit that reaches the heart muscle.

Effects of cold combined with exercise
Both cold and exercise individually increase the heart’s demand for oxygen, and the combination of the two stresses has an additive effect on this demand (see these two review articles, here and here). Exercising in the cold therefore results in an increase in systolic and diastolic blood pressure as well as in the “double product” (heart rate x blood pressure), a marker of cardiac work. The increased demand for oxygen by the heart muscle caused by cold weather and exercise increases blood flow to the coronary arteries that supply the heart. The rate of coronary blood flow increases in response to cold and exercise combined compared to exercise alone, but this increase is mitigated, especially in older people. Therefore, it appears that cold causes a relative lag between the oxygen demand from the myocardium and the oxygenated blood supply during exercise.

In a study carried out by our research team, we exposed 24 coronary patients with stable angina to various experimental conditions in a cold room at – 8°C, specifically a stress test with electrocardiogram (ECG) in cold without antianginal medication and an ECG at + 20°C. We then repeated these two ECGs after taking one drug (propranolol) that slows the heart rate, and then another drug (diltiazem) that causes dilation of the coronary arteries. The results showed that the cold caused mild to moderate ischemia (lack of blood supply) to the myocardium in only 1/3 of the patients. When ECG was done with medication, this effect was completely reversed. The two drugs have been shown to be equally effective in reversing this ischemia. The conclusion: cold had only a modest effect in 1/3 of patients and antianginal drugs are as effective in cold (- 8°C) as at + 20°C.

In another study in the same type of patients, we compared the effects of an ECG at – 20°C with an ECG at + 20°C. The results showed that at this very cold temperature, all patients presented with angina and earlier ischemia.

Hypertension
The prevalence of hypertension is higher in cold regions or during winter. Cold winters increase the severity of hypertension and the risk of cardiovascular events such as myocardial infarction and stroke in people with hypertension.

Heart failure
The heart of patients with heart failure is not able to pump enough blood to maintain the blood flow necessary to meet the body’s needs. Only a few studies have looked at the effects of cold on heart failure. Patients with heart failure do not have much leeway when the heart’s workload increases in cold weather or when they need to exert sustained physical effort. Cold combined with exercise further decreases the performance of people with heart failure. For example, in a study we conducted at the Montreal Heart Institute, cold reduced exercise time by 21% in people with heart failure. In the same study, the use of beta-blocker class antihypertensive drugs (metoprolol or carvedilol) significantly increased exercise time and reduced the impact of cold exposure on the functional capacity of patients. Another of our studies indicates that treatment with an antihypertensive drug from the class of angiotensin converting enzyme inhibitors, lisinopril, also mitigates the impact of cold on the ability to exercise in patients with heart failure.

Cold, exercise and coronary heart disease
It is rather unlikely that the cold alone could cause an increase in the work of the heart muscle large enough to cause a heart attack. Cold stress increases the work of the heart muscle and therefore the blood supply to the heart in healthy people, but in coronary patients there is usually a reduction in blood flow to the coronary arteries. The combination of cold and exercise puts coronary patients at risk of cardiac ischemia (lack of oxygen to the heart) much earlier in their workout than in warm or temperate weather. For this reason, people with coronary artery disease should limit exposure to cold and wear clothes that keep them warm and cover their face (significant heat loss in this part of the body) when working out outdoors in cold weather. In addition, the exercise tolerance of people with coronary heart disease will be reduced in cold weather. It is strongly recommended that coronary heart patients do indoor warm-up exercises before going out to exercise outdoors in cold weather.