Control of inflammation through diet

Control of inflammation through diet

OVERVIEW

  • Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries, which can lead to the development of cardiovascular events such as myocardial infarction and stroke.
  • Two studies show that people whose diet is anti-inflammatory due to a high intake of plants (vegetables, fruits, whole grains), beverages rich in antioxidants (tea, coffee, red wine) or nuts have a significantly lower risk of being affected by cardiovascular disease.
  • This type of anti-inflammatory diet can be easily replicated by adopting the Mediterranean diet, rich in fruits, vegetables, legumes, nuts and whole grains and which has repeatedly been associated with a lower risk of cardiovascular events.

Clinically, the risk of having a coronary event is usually estimated based on age, family history, smoking and physical inactivity as well as a series of measures such as cholesterol levels, blood sugar level and blood pressure. The combination of these factors helps to establish a cardiovascular disease risk “score”, i.e. the likelihood that the patient will develop heart disease over the next ten years. When this score is moderate (10 to 20%) or high (20% and more), one or more specific drugs are generally prescribed in addition to recommending lifestyle changes in order to reduce the risk of cardiovascular events.

These estimates are useful, but they do not take into account other factors known to play an important role in the development of cardiovascular disease. This is especially true for chronic inflammation, a process that actively participates in the formation and progression of plaques that form on the lining of the arteries and can lead to cardiovascular events such as myocardial infarction and stroke.

The clinical significance of this chronic inflammation is well illustrated by studies of patients who have had a heart attack and are treated with a statin to lower their LDL cholesterol levels. Studies show that a high proportion (about 40%) of these people have excessively high blood levels of inflammatory proteins, and it is likely that this residual inflammatory risk contributes to the high rate of cardiovascular mortality (nearly 30%) that affects these patients within two years of starting treatment, despite a significant reduction in LDL cholesterol. In this sense, it is interesting to note that the canakinumab antibody, which neutralizes an inflammatory protein (interleukin-1 β), causes a slight but significant decrease in major cardiovascular events in coronary patients. Statins, used to lower LDL cholesterol levels, are also believed to have an anti-inflammatory effect (reduction in C-reactive protein levels) that would contribute to reducing the risk of cardiovascular events. One of the roles of inflammation is also demonstrated by the work of Dr. Jean-Claude Tardif of the Montreal Heart Institute, which shows that the anti-inflammatory drug colchicine significantly reduces the risk of recurrence of cardiovascular events.

Reducing chronic inflammation is therefore a very promising approach for decreasing the risk of cardiovascular disease, both in people who have already had a heart attack and are at a very high risk of recurrence and in healthy people who are at high risk of cardiovascular disease.

Anti-inflammatory diet
Two studies published in the Journal of the American College of Cardiology suggest that the nature of the diet can greatly influence the degree of chronic inflammation and, in turn, the risk of cardiovascular disease. In the first of these two articles, researchers analyzed the link between diet-induced inflammation and the risk of cardiovascular disease in 166,000 women and 44,000 men followed for 24 to 30 years. The inflammatory potential of the participants’ diet was estimated using an index based on the known effect of various foods on the blood levels of 3 inflammatory markers (interleukin-6, TNFα-R2, and C-reactive protein or CRP). For example, consumption of red meat, deli meats and ultra-processed industrial products is associated with an increase in these markers, while that of vegetables, fruits, whole grains and beverages rich in antioxidants (tea, coffee, red wine) is on the contrary associated with a decrease in their blood levels. People who regularly eat pro-inflammatory foods therefore have a higher inflammatory food index, while those whose diet is rich in anti-inflammatory foods have a lower index.

Using this approach, the researchers observed that a higher dietary inflammatory index was associated with an increased risk of cardiovascular disease, with a 40% increase in risk in those with the highest index (Figure 1). This increased risk associated with inflammation is particularly pronounced for coronary heart disease (acute coronary syndromes including myocardial infarction) with an increased risk of 46%, but seems less pronounced for cerebrovascular accidents (stroke) (28% increase in risk). The study shows that a higher dietary inflammation index was also associated with two risk markers for cardiovascular disease, higher circulating triglyceride levels as well as lower HDL cholesterol. These results therefore indicate that there is a link between the degree of chronic inflammation generated by diet and the risk of long-term cardiovascular disease, in agreement with data from a recent meta-analysis of 14 epidemiological studies that have explored this association.

Figure 1. Change in the risk of cardiovascular disease depending on the inflammatory potential of the diet. From Li et al. (2020). The dotted lines indicate the 95% confidence interval.

Anti-inflammatory nuts
A second study by a group of Spanish researchers investigated the anti-inflammatory potential of walnuts. Several epidemiological studies have reported that regular consumption of nuts is associated with a marked decrease in the risk of cardiovascular disease. For example, a recent meta-analysis of 19 prospective studies shows that people who consume the most nuts (28 g per day) have a lower risk of developing coronary artery disease (18%) or of dying from these diseases (23%). These reductions in the risk of cardiovascular disease may be explained in part by the decrease in LDL cholesterol (4%) and triglyceride (5%) levels observed following the consumption of nuts in intervention studies. However, this decrease remains relatively modest and cannot alone explain the marked reduction in the risk of cardiovascular disease observed in the studies.

The results of the Spanish study strongly suggest that a reduction in inflammation could greatly contribute to the preventative effect of nuts. In this study, 708 people aged 63 to 79 were divided into two groups, a control group whose diet was completely nut free and an intervention group, in which participants consumed about 15% of their calories daily in the form of walnuts (30–60 g/day). After a period of 2 years, the researchers observed large variations in the blood levels of several inflammatory markers between the two groups (Figure 2), in particular for GM-CSF (a cytokine that promotes the production of inflammatory cells) and interleukin-1 β (a highly inflammatory cytokine whose blood levels are correlated with an increased risk of death during a heart attack). This reduction in IL-1 β levels is particularly interesting because, as mentioned earlier, a randomized clinical study (CANTOS) has shown that an antibody neutralizing this cytokine leads to a reduction in the risk of myocardial infarction in coronary heart patients.

Figure 2. Reduction in blood levels of several inflammatory markers by a diet enriched with nuts. From Cofán et al. (2020). GM-CSF: granulocyte-monocyte colony stimulating factor; hs-CRP: high-sensitivity C-reactive protein; IFN: interferon; IL: interleukin; SAA: serum amyloid A; sE-sel: soluble E-selectin; sVCAM: soluble vascular cell adhesion molecule; TNF: tumour necrosis factor.

Taken together, these studies therefore confirm that an anti-inflammatory diet provides concrete benefits in terms of preventing cardiovascular disease. This preventative potential remains largely unexploited, as Canadians consume about half of all their calories in the form of ultra-processed pro-inflammatory foods, while less than a third of the population eats the recommended minimum of five daily servings of fruits and vegetables and less than 5% of the recommended three servings of whole grains. This imbalance causes most people’s diets to be pro-inflammatory, contributes to the development of cardiovascular diseases as well as other chronic diseases, including certain common cancers such as colon cancer, and reduces the life expectancy.

The easiest way to restore this balance and reduce inflammation is to eat a diet rich in plants while reducing the intake of industrial products. The Mediterranean diet, for example, is an exemplary anti-inflammatory diet due to its abundance of fruits, vegetables, legumes, nuts and whole grains, and its positive impact will be all the greater if regular consumption of these foods reduces that of pro-inflammatory foods such as red meat, deli meats and ultra-processed products. Not to mention that this diet is also associated with a high intake of fibre, which allows the production of anti-inflammatory short-chain fatty acids by the intestinal microbiota, and of phytochemicals such as polyphenols, which have antioxidant and anti-inflammatory properties.

In summary, these recent studies demonstrate once again the important role of diet in preventing chronic disease and improving healthy life expectancy.

Do houseplants have beneficial effects on health?

Do houseplants have beneficial effects on health?

OVERVIEW

Having and caring for houseplants can:

  • Reduce psychological and physiological stress.
  • Improve recovery after surgery.
  • Increase attention and concentration.
  • Increase creativity and productivity.

In our modern societies, where everything seems to go faster and faster, many feel the harmful effects of stress and anxiety; however, this appears to have increased since the start of the COVID-19 pandemic. During spring and summer 2020, many Quebecers took advantage of the beautiful weather to recharge their batteries in nature, either by visiting a park, camping, walking in the forest, or renting a cottage in the countryside. As winter approaches, contact with greenery becomes scarce and travel to regions with warmer climates is risky and strongly discouraged by Public Health. Apart from hiking in our beautiful coniferous forests, one of the only possible contacts with greenery during this long winter will be the green plants we take care of in our homes. Houseplants decorate and bring a natural touch to our homes, but do they have proven beneficial effects on our physical and mental health.

Stress reduction
A systematic review in 2019 identified some 50 studies on the psychological benefits of houseplants, most of these studies being of average quality. The most noticeable positive effects of houseplants on participants are an increase in positive emotions and a decrease in negative emotions, followed by a reduction in physical discomfort.

In a randomized, controlled crossover study of young adults, participants saw their mood improve more after transplanting an indoor plant than after performing a task on the computer. In addition, participants’ diastolic blood pressure and sympathetic nervous system activity (physiological response to stress) were significantly lower after transplanting a plant than after performing a computer task. These results indicate that interaction with houseplants can reduce psychological and physiological stress compared to mental tasks.

Plants in the office
In 2020, a Japanese team carried out a study on the effects of plants in the workplace on the level of psychological and physiological stress of workers. In the first phase of the study (1 week), workers worked at their desks without a plant, while in the intervention phase (4 weeks), participants could see and care for an indoor plant that they were able to choose from six different types (bonsai, Tillandsia, echeveria, cactus, leafy plant, kokedama). Participants were instructed to take a three-minute break when feeling tired and to take their pulse before and after the break. During these 3-minute breaks, workers had to look at their desks (with or without an indoor plant). Researchers measured psychological stress with the State-Trait Anxiety Inventory (STAI). The participants’ involvement was therefore both passive (looking at the plant) and active (watering and maintaining the plant).

The psychological stress assessed by STAI was significantly, albeit moderately, lower during the intervention in the presence of an indoor plant than during the period without the plant. The heart rate of the majority of patients (89%) was not significantly different before and after the procedure, while it decreased in 4.8% of participants and increased in 6.3% of patients. It must be concluded that the intervention had no effect on heart rate, which is an indicator of physiological stress, although it slightly reduced psychological stress.

A study of 444 employees in India and the United States indicates that office environments that include natural elements such as indoor plants and exposure to natural light positively influence job satisfaction and engagement. These natural elements seem to act as “buffers” against the effects of stress and anxiety generated by work.

Recovery after surgery
It appears that houseplants help patients recover after surgery, according to a study in a hospital in Korea. Eighty women recovering from thyroidectomy were randomly assigned to a room without plants or to a room with indoor plants (foliage and flowering). Data collected for each patient included length of hospital stay, use of analgesics to control pain, vital signs, intensity of perceived pain, anxiety and fatigue, STAI index (psychological stress), and other questionnaires. Patients who were hospitalized in rooms with indoor plants and flowers had shorter hospital stays, took fewer painkillers, experienced less pain, anxiety, and fatigue, and they had more positive emotions and greater satisfaction with their room than patients who recovered from their operation in a room without plants. The same researchers performed a similar study in patients recovering after an appendectomy. Again, patients who had plants and flowers in their rooms recovered better from their surgery than those who did not have plants in their rooms.

Improved attention and concentration
Twenty-three elementary school students (ages 11–13) participated in a study where they were put in a room with either an artificial plant, a real plant, a photograph of a plant, or no plant at all. The participants wore a wireless electroencephalography device during the three minutes of exposure to the different stimuli. Children who were put in the presence of a real plant were more attentive and better able to concentrate than those in the other groups. In addition, the presence of a real plant was associated with a better mood in general.

Productivity
A cross-sectional study of 385 office workers in Norway found a significant, albeit very modest, association between the number of plants in their office and the number of sick days and productivity. Workers who had more plants in their office took slightly fewer sick days and were a bit more productive on the job. In another study, American students were asked to perform computer tasks, with or without houseplants, in windowless rooms. In the presence of plants, participants were more productive (12% faster in performing tasks) and less stressed since their blood pressure was lower than in the absence of houseplants.

What about air quality?
Do plants purify the air in our homes? This is an interesting question since we spend a lot of time in increasingly airtight homes, and materials and our activity (e.g. cooking) emit pollutants such as volatile organic compounds (VOCs), oxidizing compounds (e.g. ozone), and fine particles. A NASA study showed that plants and associated microorganisms in the soil could reduce the level of pollutants in a small, sealed experimental chamber. Are these favourable results obtained in a laboratory also observable in our homes, schools and offices? Some studies (this one for example) conclude that plants decrease the concentrations of CO2, VOCs and fine particles (PM10). However, these results have been called into question by researchers (see this study) who question the methodology used in previous studies and who believe that plants are ineffective in improving the indoor air quality of our buildings. According to these researchers, it would be better to focus research efforts on other air-cleaning technologies as well as on the beneficial effects of plants on human health.

Conclusion
Indoor plants can provide health benefits by reducing psychological and physiological stress. Owning and maintaining plants can improve mood and increase attention and concentration. New, more powerful and better controlled studies will be needed to better identify and understand the effects of plants on human health.

Insufficient dietary fibre intake harms the gut microbiota and the immune system’s balance

Insufficient dietary fibre intake harms the gut microbiota and the immune system’s balance

OVERVIEW

  • The typical diet in Western countries does not contain enough fibre.
  • This insufficient fibre intake adversely affects the bacteria in the gut microbiota and therefore the immunity and health of the host.
  • An abundant and varied consumption of dietary fibre helps maintain a diverse and healthy microbiota, which produces metabolites that contribute to human physiology and health.

Dietary fibre is made up of complex sugars that cannot be digested by human digestive enzymes, but is an important source of energy for gut bacteria, which have the ability to break it down. This fibre comes mainly from plants, but is also found in animal tissues (meat, offal), fungi (mushrooms, yeasts, moulds), and foodborne microorganisms. The main fibres are cellulose, lignins, pectin, inulin, starches and dextrins resistant to amylases, chitins, beta-glucans and other oligosaccharides. However, not all dietary fibre can be used by the intestinal microbiota (cellulose for example), so researchers are more particularly interested in “microbiota-accessible carbohydrates” or MAC, which are found in legumes, wheat and oats, for example.

Resurgence of allergies and inflammatory and autoimmune diseases
Non-communicable diseases, such as allergies and inflammatory and autoimmune diseases have been on the rise in Western countries over the past century. Although we do not know all the causes of these increases, it is quite plausible that they have an environmental component. The transition from the traditional diet to the Western diet that occurred after the Industrial Revolution is often called into question. The typical Western diet consists primarily of processed foods high in sugar and fat, but low in minerals, vitamins, and fibre. The recommended daily intake of dietary fibre is at least 30 grams (1 ounce), while followers of the Western diet consume only 15 grams on average. In addition, people living in traditional societies consume up to 50–120 g/day of fibre and have a much more diverse gut microbiota than Westerners. A diverse microbiota is associated with good health in general, while a poorly diversified microbiota has been associated with chronic diseases common in Western countries, such as type 2 diabetes, obesity, inflammatory bowel disease (ulcerative colitis, Crohn’s disease), colorectal cancer, rheumatoid arthritis and asthma.

Metabolites of the gut microbiota
The gut microbiota contributes to human physiology by producing a multitude of metabolites. The most studied are short-chain fatty acids (SCFAs), which are organic compounds such as acetate, propionate and butyrate that together constitute ≥95% of SCFAs. These metabolites are absorbed and find their way into the bloodstream via the portal vein and act on the liver and then, via the peripheral blood circulation, on other organs of the human body. SCFAs play key roles in the regulation of human metabolism, the immune system, and cell proliferation. SCFAs are metabolites produced by microorganisms in the intestinal microbiota from dietary fibres, which are complex sugars. The microbiota produces other metabolites from amino acids derived from dietary protein, including indole and its derivatives, tryptamine, serotonin, histamine, dopamine, p-cresol, phenylacetylglutamine, and phenylacetylglycine.

A lack of dietary fibre leads to the generation of toxic metabolites by the microbiota
Insufficient fibre intake not only leads to reduced microbiota diversity and a reduction in the amount of SCFAs produced, but also causes a shift in the metabolism of microorganisms towards the use of substrates less favourable for human health. Among these alternative substrates, amino acids from food proteins are fermented by the microbiota into branched-chain fatty acids, ammonia, amines, N-nitroso compounds, phenolic compounds such as p-cresol, sulphides, and indole compounds. These metabolites are either cytotoxic and/or pro-inflammatory and they contribute to the development of chronic diseases, particularly colorectal cancer.

Effects on mucus production that protects the intestinal lining
The main substrates used by the microbiota when fibre intake is low are mucins, glycoproteins contained in the mucus that cover and protect the epithelium of the intestinal lining. Maintaining this layer of mucus is very important to prevent infections; however, a diet low in fibre alters the composition of the gut microbiota and leads to a significant deterioration of the mucus layer, which can increase the susceptibility to infections and chronic inflammatory diseases (see figure, below). Transcriptomic analyses have revealed that when there is a lack of MAC-type fibres, the enzymes that break down the mucus are expressed in greater quantities in the microorganisms of the microbiota. The consequences of the deterioration and thinning of the mucus layer are a dysfunction of the intestinal barrier, i.e. increased permeability, which increases susceptibility to infection by pathogenic bacteria. A diet rich in fibre has the opposite effect: the microbiota is diverse and the abundant production of SCFA metabolites stimulates the production and secretion of mucus by specialized epithelial cells, known as goblet cells.

Figure. Effect of a high- or low-fibre diet on the composition and diversity of the gut microbiota and the impact on human physiology. MAC: microbiota-accessible carbohydrates. From Makki et al., 2018.

Immune system
A healthy gut microbiota contributes to the maturation and development of the immune system (see this review article). For example, short-chain fatty acids (SCFAs) produced by the microbiota stimulate the production of regulatory T-cells. SCFAs have many effects on the function and hematopoiesis of dendritic cells as well as on neutrophils, which are the first leukocytes to be mobilized by the immune system in the presence of a pathogen.

Inflammation and colon cancer
The incidence of inflammatory bowel disease has increased dramatically in the West over the past few decades. A diet low in fibre has been correlated with an increased incidence of Crohn’s disease. On the contrary, a sufficient intake of dietary fibre seems to protect against the development of ulcerative colitis, an effect which has been associated with a decrease in SCFAs produced by the microbiota, butyrate in particular, which has anti-inflammatory properties. Inflammatory bowel disease can lead to the development of colon cancer. Additionally, reduced dietary fibre intake has been linked to an increased incidence of colorectal cancer.

Dietary fibre plays a much more complex role than was believed a short time ago, when it was thought that it had a purely mechanical role in intestinal transit, by an increase in the volume of the alimentary bolus and by its emollient properties. Adequate dietary fibre intake helps maintain a diverse and healthy gut microbiota, which can prevent the development of allergies as well as inflammatory and autoimmune diseases. The gut microbiota is the subject of intense research efforts, as evidenced by the numerous scientific articles published each month, and it certainly has not revealed all of its secrets!

Plant-based meat substitutes reduce certain cardiovascular risk factors

Plant-based meat substitutes reduce certain cardiovascular risk factors

OVERVIEW

  • Participants in a study were divided into two groups, for eight weeks, one consumed two daily servings of plant-based meat substitutes (Beyond Meat products: burger, mock beef, sausage, mock chicken), while the other group ate the same amount of real meat (beef, pork, chicken).
  • Participants who ate plant-based meat substitutes lost some weight and had significantly lower blood levels of trimethylamine oxide (TMAO) and LDL cholesterol than those who consumed meat during the same period.
  • Plant-based meat substitutes appear to be beneficial for health compared to meat since high levels of TMAO and LDL cholesterol are two risk factors for cardiovascular disease.

In an article published in these pages in 2019, we discussed the merits and drawbacks of new food products that mimic the taste and texture of meat, such as Beyond Meat and Impossible Burger. These products are certainly more environmentally friendly than red meat (beef and pork in particular), which requires a lot of resources that tax the global environment. On the other hand, they are ultra-processed products that contain significant amounts of saturated fat and salt.

To determine whether plant-based meat substitutes could be healthier than meat, the Beyond Meat company funded Dr. Christopher D. Gardner, an independent and renowned researcher at Stanford University School of Medicine in California, to conduct a randomized controlled study. One must be extremely careful with studies funded by the food industry, since publishing only the results that will support the sale of their products is to their advantage. On the other hand, in the case of this study, all precautions seem to have been taken so that there is no influence on the results: study design (randomized and controlled with a crossover design), statistical analyses conducted by a third party who was not involved in the design of the study and data collection. Beyond Meat was not involved in the design of the study, the conduct of the study, or the analysis of the data. In addition, Dr. Gardner stated that he has already completed six food industry-sponsored studies with null findings from the original hypothesis.

The 36 study participants were randomly divided into two groups. During the first eight weeks, one group of participants were assigned to eat two servings/day of plant-based meat substitutes (Beyond Meat products: burger, mock beef, sausages, mock chicken), while the other group consumed two servings/day of meat (beef, pork, chicken). The two groups then switched their diet for the next eight weeks (crossover study design). Fasting levels of lipids, glucose, insulin, and trimethylamine oxide (TMAO) were measured before the start of the study and every two weeks during both phases of the study.

The main endpoint of the study was the blood level of TMAO, an emerging risk factor associated with atherosclerosis and other cardiovascular diseases. The group that consumed meat during the first eight weeks had a significantly higher TMAO mean level than the group that consumed plant-based meat substitutes (4.7 vs. 2.7 µM), as well as a higher LDL cholesterol (the “bad cholesterol”) mean level (121 vs. 110 mg/dL), while the mean HDL cholesterol (the “good cholesterol”) level was not significantly different.

A surprise awaited the researchers: Participants who first consumed plant-based products during the first eight weeks did not see their TMAO levels increase when they ate meat during the second part of the study. Researchers were unable to identify any changes in the microbiome (gut flora) that could have explained this difference. However, it appears that making the participants “vegetarian” for eight weeks caused them to lose the ability to produce TMAO from meat. This effect of a vegetarian diet on the microbiome has already been demonstrated by Dr. Stanley L. Hazen’s team at the Cleveland Clinic. After a few weeks of returning to a carnivorous diet, the microbiome begins to produce TMAO again from red meat and eggs.

TMAO is a metabolite produced by the gut microbiome from carnitine and choline, two compounds found in large quantities in red meat such as beef and pork. High concentrations of TMAO can promote atherosclerosis and thrombosis. Indeed, numerous observational studies and animal models have shown that there is an association between TMAO and cardiovascular risk, and that it is beneficial to reduce the levels of TMAO. It should be noted, however, that a causal link between TMAO and cardiovascular disease has not been established and that it is possible that it is a marker rather than a causal agent of these diseases.

In addition to the favourable effect on TMAO, participants who ate plant-based meat substitutes lost weight (1 kg on average) and had significantly lower LDL-cholesterol levels than those who ate meat (110 vs. 121 mg/dL). These differences were observed regardless of the order in which participants followed the two diets.

Beyond Meat probably hopes that these results will allow them to respond to criticisms about their products, which areultra-processed and contain a lot of salt and almost as much saturated fat as meat. Many people want to reduce their consumption of red meat, but do not like classic vegetarian dishes. It seems to us that if these meat substitutes appeal to consumers concerned about maintaining good health and allow them to reduce their meat consumption, this will be beneficial for them and may encourage them to cook veggie burgers and other plant-based meat substitutes themselves. Who knows, maybe these products will lead to significant changes in diet in the future. Considerably reducing our meat consumption can only be beneficial to our health and that of the planet.

 

The cardiovascular benefits of soy

The cardiovascular benefits of soy

OVERVIEW

  • Asians have a much lower incidence of cardiovascular disease than North Americans, a difference that has been attributed, at least in part, to their high consumption of soybeans.
  • This protection is due to soy’s high content of isoflavones, a class of polyphenols that have several positive effects on the cardiovascular system.
  • A recent study carried out among 210,700 Americans (168,474 women and 42,226 men) has just confirmed this reduction in the risk of coronary heart disease associated with the consumption of soybeans, illustrating how this legume is an attractive alternative to meat as a source of protein.

It has been known for several years that people in Asian countries have a much lower incidence of cardiovascular disease than in the West. The study of migrant populations has shown that this difference is not due to genetic factors. For example, an analysis carried out in the 1970s revealed that the Japanese who had emigrated to California had twice the incidence of coronary heart disease than that of their compatriots who remained in Japan. It should be mentioned that these Asia-America differences are also observed for several types of cancer, in particular breast cancer. Asian women (China, Japan, Korea) have one of the lowest incidences of breast cancer in the world, but this cancer can become up to 4 times more common as a result of their migration to America, and its incidence even becomes similar to that of third generation Americans. The rapid rise in cardiovascular disease or cancer following migration to the West therefore suggests that abandoning the traditional lifestyle of Asians for the one in vogue in North America greatly favours the development of these diseases.

One of the differences between the Asian and North American lifestyles that has long interested researchers is the huge gap in soy consumption. While an average of 20 to 30 g of soy protein is consumed daily in Japan and Korea, this consumption barely reaches 1 g per day in the United States (Figure 1). It is proposed that this difference could contribute to the higher incidence of cardiovascular disease in the West for two main reasons:

  • Like all members of the legume family (lentils, peas, etc.), soy is an excellent source of fibre, vitamins, minerals, and polyunsaturated fats, nutrients known to be beneficial to heart and vessel health;
  • Soybeans are an exceptional source of isoflavones, a class of polyphenols found almost exclusively in this legume. The main isoflavones in soybeans are genistein, daidzein and glycitein (Figure 2), these molecules being present in varying amounts depending on the degree of processing of soybeans.

Figure 1. Comparison of the amounts of soybeans consumed daily by people in different countries. From Pabich and Materska (2019).

 


Figure 2. Molecular structures of the main isoflavones.
Note that equol is not present in soy products, but is rather generated by the gut microbiome following their ingestion.

The highest concentrations of isoflavones are found in the starting beans (edamame) and foods derived from fermented beans (natto, tempeh, miso), while foods from the pressing of beans (tofu, soy milk) contain slightly less (Table 1). These foods are commonly consumed by Asians and allow them to obtain isoflavone intakes varying from 8 to 50 mg per day, depending on the region, quantities clearly greater than those of the inhabitants of Europe and America (less than 1 mg per day). It should be noted, however, that soy is gradually becoming more and more popular in the West as an alternative to meat and that isoflavone intake can reach levels similar to Asians (18–21 mg per day) in certain groups of health-conscious people.


Table 1. The isoflavone content of various foods.
Source: United States Department of Agriculture, Nutrient Data Laboratory.

FoodIsoflavone content
(mg/100 g)
Natto82.3
Tempeh
60.6
Soybeans (edamame)49.0
Miso41.5
Tofu22.1
Soy milk10.7

The importance of a high intake of isoflavones comes from the multiple biological properties of this class of molecules. In addition to their antioxidant and anti-inflammatory activities, common to many polyphenols, a unique feature of isoflavones is their structural resemblance to estrogens, the female sex hormones, and it is for this reason that these molecules are often referred to as phytoestrogens. This estrogenic action has so far been mainly studied in relation to the development of hormone-dependent breast cancers. Since the growth of these cancers is stimulated by estrogens, the presence of phytoestrogens creates a competition that attenuates the biological effects associated with these hormones, especially the excessive growth of breast tissue (this mode of action is comparable to that of tamoxifen, a drug prescribed for several years against breast cancer). It is also important to note that, contrary to a very widespread misconception, the consumption of soybeans should not be discouraged for women who have survived breast cancer. On the contrary, many studies conducted in recent years clearly show that regular soy consumption by these women is absolutely safe and is even associated with a significant decrease in the risk of recurrence and mortality from this disease. It should be mentioned that despite the similarity of isoflavones to estrogens, studies indicate that soy does not interfere with the effectiveness of tamoxifen or anastrozole, two drugs frequently used to treat hormone-dependent breast cancers. Consequently, for people who have been affected by breast cancer, there are only benefits to incorporating soy into their diet.

Several data suggest that the positive effect of isoflavones on health is not limited to their anticancer action, and that the combination of the antioxidant, anti-inflammatory and estrogenic activities of these molecules may also contribute to the cardiovascular benefits of soy (Table 2).


Table 2. Main properties of isoflavones involved in reducing the risk of cardiovascular disease associated with soy consumption.

Cardiovascular effectsProposed mechanisms
Vasodilation of blood vesselsIsoflavones interact with a subtype of estrogen receptor present in the coronary arteries (Erβ), leading to the production of nitrous oxide (NO), a gas that induces vasodilation of blood vessels.
Lower cholesterol levels
Accelerated elimination of LDL and VLDL in the liver.
Isoflavones reduce LDL-cholesterol oxidation in diabetic patients.
AntioxydantEquol, a metabolite of daidzein formed by the intestinal microbiome, has a strong antioxidant activity.
Anti-inflammatoryIsoflavones promote the establishment of an intestinal microbiome enriched with bacteria that produce anti-inflammatory molecules (Bifidobacterium spp., for example).

A cardioprotective effect associated with soy consumption is also suggested by the results of an epidemiological study recently published in Circulation. By examining the eating habits of 210,700 Americans (168,474 women and 42,226 men), the researchers found that people with the highest isoflavone intake (about 2 mg per day on average) had a risk of coronary heart disease decreased by 13% compared to those with minimal intake (0.15 mg per day on average). A protective effect is also observed for tofu, with an 18% reduction in the risk of coronary heart disease for people who consume it once or more per week compared to those who ate it very rarely (less than once per month). Regular consumption of soy milk (once or more per week) is also associated with a slight decrease in risk, but this decrease is not statistically significant.

These reductions may seem modest, but it should be noted that the amounts of soybeans consumed by participants in this study are relatively small, well below what is commonly measured in Japan. For example, in a Japanese study that reported a 45% decrease in the risk of myocardial infarction in women who consumed the most soy, the isoflavone intake of these people was on average around 40 mg/day, i.e. 20 times more than in the American study (2 mg/day). It is therefore likely that the reductions in the risk of coronary heart disease observed in the United States represent a minimum and could probably be greater as a result of higher soy intake.

An interesting aspect of the decreased risk of coronary heart disease associated with tofu is that it is observed as much in younger women before menopause as in postmenopausal women, but only if they are not using hormone therapy (Figure 3). According to the authors, it is possible that after menopause, the estrogenic action of isoflavones compensates for the drop in estrogen levels and may mimic the cardioprotective effect of these hormones. In the presence of synthetic hormones, on the other hand, isoflavones are “masked” by excess hormones and therefore cannot exert their beneficial effects. For younger women, it is likely that the higher expression of the estrogen receptor before menopause promotes a greater interaction with isoflavones and allows these molecules to positively influence the function of blood vessels.

Figure 3. Association between risk of coronary heart disease and tofu consumption by hormonal status.
From Ma et al. (2020).

Taken together, these observations suggest that soy products have a positive effect on cardiovascular health and therefore represent an excellent alternative to meat as a source of protein. A recent study reports that these cardiovascular benefits can be even more pronounced following the consumption of fermented soy products such as natto, which is very rich in isoflavones, but given its texture (sticky, gooey), its strong smell (reminiscent of a well-made cheese), and its low availability in grocery stores, this food is foreign to our food culture and unlikely to be adopted by the North American population. Tofu is probably the most accessible soy-derived food given its neutral taste that allows it to be used in a wide variety of dishes, Asian-style or not. Soy milk is a less attractive alternative, not only because its consumption is not associated with a significant decrease in the risk of coronary heart disease, but also because these products often contain significant amounts of sugar.

Choosing dietary sources of unsaturated fats has many health benefits

Choosing dietary sources of unsaturated fats has many health benefits

OVERVIEW

  • Unsaturated fatty acids, found mainly in vegetable oils, nuts, certain seeds and fatty fish, play several essential roles for the proper functioning of the human body.
  • While saturated fatty acids, found mainly in foods of animal origin, increase LDL cholesterol levels, unsaturated fats lower this type of cholesterol and thereby reduce the risk of cardiovascular events.
  • Current scientific consensus is therefore that a reduction in saturated fat intake combined with an increased intake of unsaturated fat represents the optimal combination of fat to prevent cardiovascular disease and reduce the risk of premature mortality.
Most nutrition experts now agree that a reduction in saturated fat intake combined with an increased intake of quality unsaturated fat (especially monounsaturated and polyunsaturated omega-3) represents the optimal combination of fat to prevent cardiovascular disease and reduce the risk of premature death. The current consensus, recently summarized in articles published in the journals Science and BMJ, is therefore to choose dietary sources of unsaturated fats, such as vegetable oils (particularly extra virgin olive oil and those rich in omega-3s such as canola), nuts, certain seeds (flax, chia, hemp) and fatty fish (salmon, sardine), while limiting the intake of foods mainly composed of saturated fats such as red meat. This roughly corresponds to the Mediterranean diet, a way of eating that has repeatedly been associated with a decreased risk of several chronic diseases, especially cardiovascular disease.

Yet despite this scientific consensus, the popular press and social media are full of conflicting information about the impact of different forms of dietary fat on health. This has become particularly striking since the rise in popularity of low-carbohydrate (low-carb) diets, notably the ketogenic diet, which advocates a drastic reduction in carbohydrates combined with a high fat intake. In general, these diets make no distinction as to the type of fat that should be consumed, which can lead to questionable recommendations like adding butter to your coffee or eating bacon every day. As a result, followers of these diets may eat excessive amounts of foods high in saturated fat, and studies show that this type of diet is associated with a significant increase in LDL cholesterol, an important risk factor for cardiovascular disease. According to a recent study, a low-carbohydrate diet (<40% of calories), but that contains a lot of fat and protein of animal origin, could even significantly increase the risk of premature death.

As a result, there is a lot of confusion surrounding the effects of different dietary fats on health. To get a clearer picture, it seems useful to take a look at the main differences between saturated and unsaturated fats, both in terms of their chemical structure and their effects on the development of certain diseases.

A little chemistry…
Fatty acids are carbon chains of variable length whose rigidity varies depending on the degree of saturation of these carbon atoms by hydrogen atoms. When all the carbon atoms in the chain form single bonds with each other by engaging two electrons (one from each carbon), the fatty acid is said to be saturated because each carbon carries as much hydrogen as possible. Conversely, when certain carbons in the chain use 4 electrons to form a double bond between them (2 from each carbon), the fatty acid is said to be unsaturated because it lacks hydrogen atoms.

These differences in saturation have a great influence on the physicochemical properties of fatty acids. When saturated, fatty acids are linear chains that allow molecules to squeeze tightly against each other and thus be more stable. It is for this reason that butter and animal fats, rich sources of these saturated fats, are solid or semi-solid at room temperature and require a source of heat to melt.

Unsaturated fatty acids have a very different structure (Figure 1). The double bonds in their chains create points of stiffness that produce a “crease” in the chain and prevent molecules from tightening against each other as closely as saturated fat. Foods that are mainly composed of unsaturated fats, vegetable oils for example, are therefore liquid at room temperature. This fluidity directly depends on the number of double bonds present in the chain of unsaturated fat: monounsaturated fats contain only one double bond and are therefore less fluid than polyunsaturated fats which contain 2 or 3, and this is why olive oil, a rich source of monounsaturated fat, is liquid at room temperature but solidifies in the refrigerator, while oils rich in polyunsaturated fat remain liquid even at cold temperatures.

Figure 1. Structure of the main types of saturated, monounsaturated and polyunsaturated omega-3 and omega-6 fats. The main food sources for each fat are shown in italics.

Polyunsaturated fats can be classified into two main classes, omega-3 and omega-6. The term omega refers to the locationof the first double bond in the fatty acid chain from its end (omega is the last letter of the Greek alphabet). An omega-3 or omega-6 polyunsaturated fatty acid is therefore a fat whose first double bond is located in position 3 or 6, respectively (indicated in red in the figure).

It should be noted that there is no food that contains only one type of fat. On the other hand, plant foods (especially oils, seeds and nuts) are generally made up of unsaturated fats, while those of animal origin, such as meat, eggs and dairy products, contain more saturated fat. There are, however, exceptions: some tropical oils like palm and coconut oils contain large amounts of saturated fat (more than butter), while some meats like fatty fish are rich sources of omega-3 polyunsaturated fats such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids.

Physiological roles of fatty acids
All fatty acids, whether saturated or unsaturated, play important roles in the normal functioning of the human body, especially as constituents of cell membranes and as a source of energy for our cells. From a dietary point of view, however, only polyunsaturated fats are essential: while our metabolism is capable of producing saturated and monounsaturated fatty acids on its own (mainly from glucose and fructose in the liver), linoleic (omega-6) and linolenic (omega-3) acids must absolutely be obtained from food. These two polyunsaturated fats, as well as their longer chain derivatives (ALA, EPA, DHA), play essential roles in several basic physiological functions, in particular in the brain, retina, heart, and reproductive and immune systems. These benefits are largely due to the degree of unsaturation of these fats, which gives greater fluidity to cell membranes, and at the same time facilitate a host of processes such as the transmission of electrical impulses in the heart or neurotransmitters in the synapses of the brain. In short, while all fats have important functions for the functioning of the body, polyunsaturated fats clearly stand out for their contribution to several processes essential to life.

Impacts on cholesterol
Another major difference between saturated and unsaturated fatty acids is their respective effects on LDL cholesterol levels. After absorption in the intestine, the fats ingested during the meal (mainly in the form of triglycerides and cholesterol) are “packaged” in structures called chylomicrons and transported to the peripheral organs (the fatty tissue and the muscles, mainly) where they are captured and used as a source of energy or stored for future use. The residues of these chylomicrons, containing the portion of excess fatty acids and cholesterol, are then transported to the liver, where they are taken up and will influence certain genes involved in the production of low-density lipoproteins (LDL), which serve to transport cholesterol, as well as their receptors (LDLR), which serve to eliminate it from the blood circulation.

And this is where the main difference between saturated and unsaturated fats lies: a very large number of studies have shown that saturated fats (especially those made up of 12, 14 and 16 carbon atoms) increase LDL production while decreasing that of its receptor, with the result that the amount of LDL cholesterol in the blood increases. Conversely, while polyunsaturated fats also increase LDL cholesterol production, they also increase the number and efficiency of LDLR receptors, which overall lowers LDL cholesterol levels in the blood. It has been proposed that this greater activity of the LDLR receptor is due to an increase in the fluidity of the membranes caused by the presence of polyunsaturated fats which would allow the receptor to recycle more quickly on the surface liver cells (and therefore be able to carry more LDL particles inside the cells).

Reduction of the risk of cardiovascular disease
A very large number of epidemiological studies have shown that an increase in LDL cholesterol levels is associated with an increased risk of cardiovascular diseases. Since saturated fat increases LDL cholesterol while unsaturated fat decreases it, we can expect that replacing saturated fat with unsaturated fat will lower the risk of these diseases. And that is exactly what studies show: for example, an analysis of 11 prospective studies indicates that replacing 5% of caloric intake from saturated fat with polyunsaturated fat was associated with a 13% decrease in the risk of coronary artery disease. A similar decrease has been observed in clinical studies, where replacing every 1% of energy from saturated fat with unsaturated fat reduced the risk of cardiovascular events by 2%. In light of these results, there is no doubt that substituting saturated fats with unsaturated fats is an essential dietary change to reduce the risk of cardiovascular disease.

A very important point of these studies, which is still poorly understood by many people (including some health professionals), is that it is not only a reduction of saturated fat intake that counts for improving the health of the heart and vessels, but most importantly the source of energy that is consumed to replace these saturated fats. For example, while the substitution of saturated fats by polyunsaturated fats, monounsaturated fats or sources of complex carbohydrates like whole grains is associated with a substantial reduction in the risk of cardiovascular disease, this decrease is completely abolished when saturated fats are replaced by trans fats or poor quality carbohydrate sources (e.g., refined flours and added sugars) (Figure 2). Clinical studies indicate that the negative effect of an increased intake of simple sugars is caused by a reduction in HDL cholesterol (the good one) as well as an increase in triglyceride levels. In other words, if a person decreases their intake of saturated fat while simultaneously increasing their consumption of simple carbohydrates (white bread, potatoes, processed foods containing added sugars), these sugars simply cancel any potential cardiovascular benefit from reducing saturated fat intake.


Figure 2. Modulation of the risk of coronary heart disease following a substitution of saturated fat by unsaturated fat or by different sources of carbohydrates. The values shown correspond to variations in the risk of coronary heart disease following a replacement of 5% of the caloric intake from saturated fat by 5% of the various energy sources. Adapted from Li et al. (2015).

Another implication of these results is that one should be wary of “low-fat” or “0% fat” products, even though these foods are generally promoted as healthier. In the vast majority of cases, reducing saturated fat in these products involves the parallel addition of simple sugars, which counteracts the positive effects of reducing saturated fat.

This increased risk from simple sugars largely explains the confusion generated by some studies suggesting that there is no link between the consumption of saturated fat and the risk of cardiovascular disease (see here and here, for example). However, most participants in these studies used simple carbohydrates as an energy source to replace saturated fat, which outweighed the benefits of reduced intake of saturated fat. Unfortunately, media coverage of these studies did not capture these nuances, with the result that many people may have mistakenly believed that a high intake of saturated fat posed no risk to cardiovascular health.

In conclusion, it is worth recalling once again the current scientific consensus, stated following the critical examination of several hundred studies: replacing saturated fats by unsaturated fats (monounsaturated or polyunsaturated) is associated with a significant reduction in the risk of cardiovascular disease. As mentioned earlier, the easiest way to make this substitution is to use vegetable oils as the main fatty substance instead of butter and to choose foods rich in unsaturated fats such as nuts, certain seeds and fatty fish (salmon, sardine), while limiting the intake of foods rich in saturated fats such as red meat. It is also interesting to note that in addition to exerting positive effects on the cardiovascular system, recent studies suggest that this type of diet prevents excessive accumulation of fat in the liver (liver steatosis), an important risk factor of insulin resistance and therefore type 2 diabetes. An important role in liver function is also suggested by the recent observation that replacing saturated fats of animal origin by mono- or polyunsaturated fats was associated with a significant reduction in the risk of hepatocellular carcinoma, the main form of liver cancer. Consequently, there are only advantages to choosing dietary sources of unsaturated fat.