Is exercising late in the morning associated with a reduced risk of cardiovascular disease?

Is exercising late in the morning associated with a reduced risk of cardiovascular disease?

OVERVIEW

  • Participants in a study who exercised in the late morning had a 16% lower risk of a coronary event and a 17% lower risk of a stroke compared to those who exercised at another time of day.
  • These effects were particularly pronounced in women, but are non-significant when considering data for men only.
  • These results illustrate the potential importance of chronoactivity in the prevention of cardiovascular disease.

Is it better to exercise in the morning or later in the day to reduce the risk of cardiovascular disease? This is a question that Dutch researchers have tried to answer in a study of 86,657 participants in the UK-Biobank cohort, aged 62 on average. Participants’ physical activity data was collected at the start of the study using a wrist-worn triaxial accelerometer over a 7-day period. Six years after the start of the study, 3,707 cardiovascular events had been reported. Participants who exercised late in the morning had a 16% lower risk of a coronary event and a 17% lower risk of a stroke, compared to those who exercised at another time of day.

These effects were particularly pronounced in women. In contrast, most of the favourable associations of morning physical activity disappeared when the researchers analyzed data from men only. This difference remains unexplained and raises the possibility that a confounding factor may be the cause. Do women who exercise in the morning have better lifestyle habits, unrelated to physical exercise, such as better diet?

Previous studies had shown a favourable association between morning physical activity and better cardiometabolic health, both for obesity (see herehere and here), type 2 diabetes, and hypertension. However, a number of studies have shown completely opposite results. For example, a recent study in Brazil indicates that for hypertensive men, evening exercise was more effective than morning exercise in restoring the heart rate and lowering blood pressure. Additionally, a Swedish study of men with type 2 diabetes indicates that high-intensity interval training (HIIT) performed in the afternoon was more effective than morning exercise in improving blood sugar levels. It should be noted that these last two intervention studies are of the “randomized and controlled” type, a study design that provides a relatively high level of scientific evidence, even if these studies were carried out with a small number of participants.

Further studies will be needed to better understand the chronoactivity phenomena, but regardless of whether it is done in the morning, afternoon or evening, it is well established that physical exercise is beneficial for cardiovascular health, mental health and overall health.

Walking associated with reduced risk of dementia, cardiovascular disease and cancer

Walking associated with reduced risk of dementia, cardiovascular disease and cancer

OVERVIEW

  • Participants in a prospective study who walked more had a significantly reduced risk of dementia, premature mortality (all causes), mortality from cardiovascular disease, and cancer incidence.
  • The optimal beneficial effect of walking is obtained at almost 10,000 steps/day for the risks of dementia, premature death and cancer.
  • As little as 3,800 steps/day is associated with a 25% reduced risk of dementia, half the maximum effect (50%) obtained at 9,800 steps/day.
  • Higher intensity (steps/minute) of walking was associated with favourable effects on premature death and the incidence of cardiovascular disease and cancer.

Several studies published to date suggest that increasing the number of daily steps is important to prevent the development of chronic diseases and premature death. We often hear in the news or on social media that 10,000 steps/day is the target to reach to enjoy the maximum health benefits. However, some studies indicate that at 6,000 to 8,000 steps/day, the maximum protective effect is achieved and that taking more steps does not significantly reduce the risk of death from all causes, for example. However, there is relatively little data on the subject, and the studies published to date do not distinguish between the different types of walking (daily life vs. exercise) and have paid little attention to the relative importance of walking intensity or cadence.

A prospective study recently examined the dose-response association between the amount (number of steps/day) and intensity (cadence) of walking and the incidence of dementia. The study, which lasted an average of 6.9 years, was carried out among 78,430 people aged 40 to 79 who were part of the UK Biobank cohort. Participants wore an accelerometer around their dominant wrist 24 hours a day, 7 days a week for at least 3 consecutive days and had no diagnosed cardiovascular disease, cancer or dementia at the start of the study. From the data collected by the accelerometer, it was possible to determine:

  • the total number of steps/day;
  • the number of steps related to activities of daily living (e.g., walking from one room to another), defined as less than 40 steps/minute;
  • the number of steps taken during intentional physical activity, defined as 40 or more steps per minute (e.g., walking for exercise);
  • the maximum 30-minute cadence (i.e., the average number of steps per minute recorded for the 30 minutes, not necessarily consecutive, when the cadence was maximal).

By the end of the study, 6.9 years after its start, 866 participants had developed dementia. The results show a nonlinear association between the number of total steps/day and the risk of dementia. The risk of dementia decreases with the number of total steps/day up to a 51% decrease at 9,826 steps/day. A number of steps/day of 3,826 is associated with a reduction in the risk of dementia by 25%, or half of the maximum effect.

Figure 1. Dose-response association between total daily steps taken and incidence of dementia. Adapted from del Pozo Cruz et al., 2022.

For the number of steps related to daily life, the optimal dose was 3,677 steps/day, with a 42% reduction in the risk of dementia. Regarding the number of purposeful steps, the optimal dose was 6,315 steps, with a decrease in the risk of dementia by 57%. For the maximum cadence over 30 minutes, the optimal dose was 112 steps/minute, with a reduction in the risk of dementia of 62%.

Associations with risk of mortality, cardiovascular disease and cancer
In a second publication by the same researchers and with the same UK Biobank cohort mentioned above, the dose-effect association between the amount and intensity of walking and premature mortality, mortality due to cardiovascular diseases, and cancer incidence was examined. During the seven years of the study, 1,325 participants died from cancer and 664 participants died from cardiovascular disease.

The risk of premature mortality decreases with increasing number of total steps/day, up to approximately 10,000 steps/day. For every additional 2,000 steps, the risk of premature death decreases by 8%, 10% and 11%

Figure 2. Dose-response association between total steps walked/day and all-cause mortality (panel A), cardiovascular disease mortality (panel B), and incidence of 13 cancers known to be associated with a low level of physical activity (panel C). Adapted from del Pozo Cruz et al., 2022.

The strengths of this study are the very large cohort size and the use of accelerometry and algorithms that helped distinguish walking steps from other ambulatory activities (a problem in some previous studies). Among the limitations, there is firstly that this type of study, of an observational nature, does not make it possible to establish a causal link. Second, the accelerometry data at the start of the study was collected only once and therefore may not fully reflect participants’ walking habits. However, multiple measurements carried out 4 years after the start of the study indicates that there is little variation between the data obtained during the different measurements. In addition, there remains a risk of reverse causation, i.e. that the disease (dementia, cardiovascular, cancer) could be the cause of a low number of steps, despite certain precautions taken by the researchers to minimize this risk.

The researchers are of the opinion that the right part of the dose-response curves does not reflect a real reduction in the favourable effect of walking after 10,000 steps, but rather reflects the scarcity of walking data or events (diagnoses of dementia, cardiovascular disease, death) for these few great walkers. In addition, some particularly health-conscious participants may have set a target (popularized in the media) of 10,000 steps/day, which could explain why the optimal effect is observed at this amount of walking.

Walking more and walking faster are associated with health and longevity benefits. Although the optimal health effect seems to be achieved around 10,000 steps/day, it is important to note that walking between 5,000 and 8,000 steps/day allows us to greatly benefit from the positive effects associated with walking. Moreover, there is no minimum threshold for the beneficial association between the number of total daily steps walked and mortality and morbidity. For example, as few as 3,800 steps/day are associated with a reduction in the risk of dementia equivalent to half of the maximum effect obtained at approx. 10,000 steps/day. Future recommendations for the prevention of dementia, cardiovascular disease and cancer could take this new evidence into account and encourage the population to walk more and at a faster pace, in order to optimally benefit from the health benefits of walking.

Influenza vaccination reduces the risk of premature death in coronary patients

Influenza vaccination reduces the risk of premature death in coronary patients

OVERVIEW

  • Infection with the influenza virus creates inflammatory conditions that increase the risk of a myocardial infarction.
  • In patients who have had a heart attack, the administration of an influenza vaccine significantly reduces the risk of death within 12 months of the coronary event.
  • These results suggest that influenza vaccination should be considered an integral part of post-infarction treatment.

With the COVID-19 pandemic that has been raging for almost two years now, we sometimes forget that other respiratory viruses exist and can also have very negative impacts on health. This is particularly the case with influenza, one of the most common viral diseases, which affects 5 to 20% of the world’s population each year.

Infection of the airway cells with the influenza virus triggers a myriad of clinical symptoms, the most common being a “runny nose”, sore throat, fever and general discomfort. The human body generally has good resistance to the virus, and in the vast majority of cases healthy people manage to overcome the infection within a few days. However, influenza remains a dangerous disease for people whose immunity is not optimal (young children, the elderly or those affected by a chronic disease) because the virus can cause serious pulmonary complications (pneumonia, hemorrhagic bronchitis) and potentially fatal complications in these people.

In addition to its harmful effects on the lungs, several observations indicate that infection with the influenza virus can also affect the cardiovascular system. For example, it has long been known that the peak of the flu season is correlated with an increase in deaths associated with ischemic diseases such as myocardial infarction and stroke. Some studies have also reported that patients who are admitted to hospital with an acute infarction are significantly more likely to have been affected by a respiratory infection in the days or weeks before their admission. Likewise, other studies have shown that people who see a doctor for an acute respiratory infection or flu symptoms are at greater risk of having a serious cardiovascular event later on.

This link between influenza and cardiovascular disease is particularly well illustrated by the results of a Canadian study published in the New England Journal of Medicine. Researchers found that people who tested positive for any of the different respiratory viruses had a much higher risk of being hospitalized for an acute heart attack within 7 days of diagnosis. This increased risk is particularly high for influenza A and B viruses (5 and 10 times, respectively), but is also observed for infections with syncytial virus (RSV) as well as for other respiratory viruses (adenovirus, metapneumovirus, coronavirus, etc.) (Figure 1). It is therefore certain that these increases in the risk of serious cardiovascular events contribute to the mortality associated with respiratory infections, in particular that caused by influenza viruses.

Figure 1. The impact of different respiratory viruses on the risk of myocardial infarction. From Kwong et al. (2018).

This association between lung infections and the risk of cardiovascular events may be due to the close interaction between these two organs. During gas exchange, venous blood (poor in oxygen) is propelled from the right ventricle of the heart into the pulmonary arteries, oxygenates in the pulmonary capillaries, returns to the left atrium through the pulmonary veins to be finally expelled into the circulation through the aorta. The presence of an inflammatory focus associated with the presence of a lung infection can therefore be transmitted rapidly to the whole body. This is particularly dangerous for the heart because this pro-inflammatory climate caused by the infection causes acute inflammation of the vessel walls and an increased coagulation potential, two phenomena known to promote the rupture of atherosclerotic plaques and cause the obstruction of the coronary arteries responsible for the infarction.

The impact of vaccination
Winter is the peak of the flu season because the influenza virus is highly contagious in low temperatures and low humidity levels, two characteristics of winter weather conditions. Despite imperfect protection (around 50–70% effectiveness, in the best years), vaccination remains the best way to reduce the risk of contracting influenza and at the same time reduce the sometimes severe complications of this infection.

This is especially important for people at high risk due to a history of cardiovascular disease. Several studies have shown that influenza vaccination reduces the incidence of cardiovascular events in patients with coronary heart disease, especially those who have recently had a heart attack. The FLUVACS (FLU Vaccination Acute Coronary Syndromes) randomized study showed that in patients admitted for a heart attack or for angioplasty (placement of a stent to dilate the obstructed coronary artery), vaccination reduced the risk of death from cardiovascular causes after 6 months (75% reduction) and one year (66% reduction). Likewise, the FLUCAD randomized study has shown that vaccination of patients with coronary heart disease (as visualized by angiography) halves the risk of a heart attack in the following year.

The results of a randomized, double-blind study recently published in Circulation provide a clear picture of the benefits of influenza vaccination for people who have had a myocardial infarction. In this multicenter study, patients hospitalized for a heart attack or for revascularization (placement of stents to treat severe obstruction of the coronary arteries) were divided into two groups, a control group (placebo) and a group receiving a vaccine against influenza within 72 hours of hospitalization. To judge the effectiveness of the intervention, the primary endpoint used was a combination of infarction, thrombosis, and all-cause mortality occurring within one year of patient randomization. The incidence of heart attack, cardiovascular mortality, and all-cause mortality was also analyzed separately as secondary endpoints.

As shown in Figure 2, the results of the study are quite dramatic overall. For example, the incidence of the primary endpoint (infarction, thrombosis, and all-cause mortality) was reduced by almost half in vaccinated patients (5.3% vs. 7.2% for placebo). Similar decreases were also observed for secondary endpoints such as all-cause mortality (2.9% vs. 4.9%) and cardiovascular mortality (2.7% vs. 4.5%). Only the decrease in the incidence of myocardial infarction was not significantly changed in the vaccinated patients (2.0% vs. 2.4%). Overall, the results of the study confirm that influenza vaccination of patients who have suffered a heart attack or who are at a very high risk of coronary heart attacks (revascularization) significantly reduces the risk of premature death in the year following hospitalization. These observations are in agreement with a recent meta-analysis, involving nearly 240,000 patients with cardiovascular disease, which showed that influenza vaccination was associated with a reduction in the risk of cardiovascular and all-cause mortality, but not in the incidence of myocardial infarction.

Figure 2. Kaplan-Meier curves of events following the administration of the placebo (red lines) or influenza vaccine (blue lines). The cumulative incidence of events is presented for the primary outcome of the study (a combination of myocardial infarction, thrombosis, and all-cause mortality) (A) and secondary outcomes such as all-cause mortality (B), cardiovascular mortality (C), and myocardial infarction (D). From Fröbert et al. (2021).

It should also be noted that influenza vaccination also appears to be beneficial in primary prevention, as a study carried out on 80,363 people aged 65 and over showed that vaccination reduced the incidence of myocardial infarction by 25% over a period of 13 years. Whether you are healthy or have cardiovascular disease, there are only advantages to getting the influenza vaccine.

Association between chronic stress and heart attacks

Association between chronic stress and heart attacks

OVERVIEW

  • Cortisol concentration in recent hair growth was measured in middle-aged people shortly after suffering a heart attack, and in people of the same age group who were in apparent good health.
  • The median concentration of cortisol in the hair of people with a myocardial infarction was 2.4 times higher than that measured in the control group.
  • The risk of myocardial infarction was approximately 5 times higher in people with high cortisol levels compared to those with normal cortisol levels.
  • These results indicate that chronic stress appears to be an important risk factor for myocardial infarction.

It is well established that acute physical and/or emotional stress (accident, anger, fear) is a risk factor for heart attack (see our article on the subject). However, it is not clear whether high levels of chronic stress also contribute to the risk of myocardial infarction. One of the reasons that little is known about this potential risk factor is that until recently, it was only possible to measure acute stress, not chronic stress. The stress response involves activation of the corticotropic axis (or hypothalamic-pituitary-adrenal axis) and the autonomic nervous system, including the secretion of cortisol, one of the main stress hormones. Chronic stress can now be objectively and conveniently assessed in people by measuring cortisol levels in hair. As the hair grows, an amount of cortisol proportional to the blood concentration is incorporated into the hair. A 1 cm hair cut at the base of the scalp will have taken 4 to 6 weeks to grow, and its cortisol content will reflect the level of chronic stress the person has experienced during that time. The last 5–10 days of hair growth is in and under the scalp.

In a retrospective study of women and men under the age of 65 in Sweden, the levels of cortisol in the hair of 174 people who had suffered a myocardial infarction were compared to those of 3156 people in apparent good health. The median concentration of cortisol in the hair of people with a myocardial infarction was 2.4 times higher (53.2 pg/mg) than that measured in the control group (22.2 pg/mg).

Analysis of the data shows a very clear dose-response relationship, i.e. that the higher the levels of cortisol detected in the participants’ hair, the greater the risk of a heart attack. This dose-effect relationship is not linear, as can be seen in Figure 1: the cortisol levels of the first 3 quintiles are not associated with a significantly higher risk of myocardial infarction, but this risk increases very significantly for cortisol levels in quintiles 4 and 5.

Figure 1. Relative risk of myocardial infarction as a function of the concentration of cortisol in the hair of the participants. *Very significant (p <0.001). From Faresjö et al., 2020.

 

This retrospective study shows an association between high cortisol levels and myocardial infarction, but this type of study does not establish a causal link. Results from other studies also suggest that cortisol may cause myocardial infarction. For example, the elevated cortisol levels seen in people with Cushing’s syndrome or in patients receiving glucocorticoid therapy are linked to an increased prevalence of cardiovascular risk factors and myocardial infarction. It is therefore plausible that increased cortisol levels cause metabolic disorders that lead to atherosclerosis and, in the long term, to coronary artery blockage and myocardial infarction. Increased blood cortisol levels also have direct effects on the cardiovascular system, including increased contractility of blood vessels, inhibition of angiogenesis, and increased platelet activation, which can lead to thrombosis.

Exposure to chronic stress is typical of our modern societies and can be the cause of many illnesses. We have to learn to manage this chronic stress, for example by practicing cardiac coherence or meditation. I encourage readers to learn more on this subject; there are many very accessible books: Christophe André: Looking at Mindfulness, Matthieu Ricard: The Art of Meditation, Jon Kabat-Zinn: Full Catastrophe Living, and Rick Hanson: Hardwiring Happiness.

Why do the Japanese have the highest life expectancy in the world?

Why do the Japanese have the highest life expectancy in the world?

OVERVIEW

  • The Japanese have the highest life expectancy at birth among the G7 countries.
  • The higher life expectancy of the Japanese is mainly due to fewer deaths from ischemic heart disease, including myocardial infarction, and cancer (especially breast and prostate).
  • This exceptional longevity is explained by a low rate of obesity and a unique diet, characterized by a low consumption of red meat and a high consumption of fish and plant foods such as soybeans and tea.

Several diets are conducive to the maintenance of good health and to the prevention of cardiovascular disease, for example, the Mediterranean diet, the DASH diet (Dietary Approaches to Stop Hypertension), the vegetarian diet, and the Japanese diet. We often refer to the Mediterranean Diet in these pages, because it is well established scientifically that this diet is particularly beneficial for cardiovascular health. Knowing that the Japanese have the highest life expectancy among the G7 countries, the special diet in Japan has also captured the attention of experts and an informed public in recent years.

Japanese life expectancy
Among the G7 countries, Japan has the highest life expectancy at birth according to 2016 OECD data, particularly for women. Japanese men have a slightly higher life expectancy (81.1 years) than that of Canadian men (80.9 years), while the life expectancy of Japanese women (87.1 years) is significantly higher (2.4 years) than that of Canadian women (84.7 years). The healthy life expectancy of the Japanese, 74.8 years, is also higher than in Canada (73.2 years).

The higher life expectancy of Japanese people is mainly due to fewer deaths from ischemic heart disease and cancers, particularly breast and prostate cancer. This low mortality is mainly attributable to a low rate of obesity, low consumption of red meat, and high consumption of fish and plant foods such as soybeans and tea. In Japan, the obesity rate is low (4.8% for men and 3.7% for women). By comparison, in Canada 24.6% of adult men and 26.2% of adult women were obese (BMI ≥ 30) in 2016. Obesity is an important risk factor for both ischemic heart disease and several types of cancers.

Yet in the early 1960s, Japanese life expectancy was the lowest of any G7 country, mainly due to high mortality from cerebrovascular disease and stomach cancer. The decrease in salt and salty food intake is partly responsible for the decrease in mortality from cerebrovascular disease and stomach cancer. The Japanese consumed an average of 14.5 g of salt/day in 1973 and probably more before that. They eat less salt these days (9.5 g/day in 2017), but it’s still too much. Canadians now consume on average about 7 g of salt/day (2.76 g of sodium/day), almost double the intake recommended by Health Canada.

The Japanese diet
Compared to Canadians, the French, Italians and Americans, the Japanese consume much less meat (especially beef), dairy products, sugar and sweeteners, fruits and potatoes, but much more fish and seafood, rice, soybeans and tea (Table 1). In 2017, the Japanese consumed an average of 2,697 kilocalories per day according to the FAO, significantly less than in Canada (3492 kcal per day), France (3558 kcal per day), Italy (3522 kcal per day), and the United States (3766 kcal per day).

Table 1. Food supply quantity (kg/capita/year) in selected countries in 2013a.

              aAdapted from Tsugane, 2020. FAO data: FAOSTAT (Food and agriculture data) (http://www.fao.org/).

Less red meat, more fish and seafood
The Japanese eat on average almost half as much meat as Canadians (46% less), but twice as much fish and seafood. This considerable difference translates into a reduced dietary intake of saturated fatty acids, which is associated with a lower risk of ischemic heart disease, but an increased risk of stroke. On the contrary, dietary intake of omega-3 fatty acids found in fish and seafood is associated with a reduced risk of ischemic heart disease. The lower consumption of red meat and higher consumption of fish and seafood by the Japanese could therefore explain the lower mortality from ischemic heart disease and the higher mortality from cerebrovascular disease in Japan. Experts believe that the decline in death from cerebrovascular disease is associated with changes in the Japanese diet, specifically increased consumption of animal products and dairy products, and consequently of saturated fat and calcium (a consumption which remains moderate), combined with a decrease in salt consumption. Indeed, contrary to what is observed in the West, the consumption of saturated fat in Japan is associated with a reduction in the risk of hemorrhagic stroke and to a lesser extent of ischemic stroke, according to a meta-analysis of prospective studies. The cause of this difference is not known, but it could be attributable to genetic susceptibility or confounding factors according to the authors of the meta-analysis.

Soybeans
Soy is a food mainly consumed in Asia, including Japan where it is consumed as is after cooking (edamame) and especially in processed form, by fermentation (soy sauce, miso paste, nattō) or by coagulation of soy milk (tofu). It is an important source of isoflavones, molecules that have anticancer properties and are beneficial for good cardiovascular health. Consumption of isoflavones by Asians has been linked to a lower risk of breast and prostate cancer (see our article on the subject).

Sugar
The Japanese consume relatively few sugars and starches, which partly explains the low prevalence of obesity-associated diseases such as ischemic heart disease and breast cancer.

Green tea
The Japanese generally consume green tea with no added sugar. Prospective studies from Japan show that green tea consumption is associated with a lower risk of all-cause mortality and cardiac death.

Westernization of Japanese eating habits
The westernization of the Japanese diet after World War II allowed the inhabitants of this country to be healthier and to reduce mortality caused by infectious diseases, pneumonia and cerebrovascular diseases, thereby considerably increasing their life expectancy. A survey of the eating habits of 88,527 Japanese from 2003 to 2015 indicates that this westernization continues. Based on the daily consumption of 31 food groups, the researchers identified three main types of eating habits:

1- Plant foods and fish
High intakes of vegetables, fruits, legumes, potatoes, mushrooms, seaweed, pickled vegetables, rice, fish, sugar, salt-based seasonings and tea.

2- Bread and dairy
High intakes of bread, dairy products, fruits and sugar. Low intake of rice.

3- Animal foods and oils
High intakes of red and processed meat, eggs, vegetable oils.

A downward trend in the “plant foods and fish” group (the staple of the traditional Japanese diet or washoku) was observed in all age groups. An increase in the “bread and dairy” group was observed in the 50–64 and ≥65 years age groups, but not among the youngest. For the “animal foods and oils” group, an increasing trend was observed during the thirteen years of the study in all age groups except the youngest (20–34 years). The Japanese are eating more and more like Westerners. Will this have an adverse effect on their health and life expectancy? It is too early to know, only the next few decades will tell.

Contribution of genes and lifestyle to the health of the Japanese
Some risk factors for cardiovascular disease and cancer are hereditary, while others are associated with lifestyle (diet, smoking, exercise, etc.). At the turn of the 20th century, there was significant Japanese immigration to the United States (especially California and Hawaii) and South America (Brazil, Peru). After a few generations, the descendants of Japanese migrants adopted the way of life of the host countries. While Japan has one of the lowest incidences of cardiovascular disease in the world, this incidence doubled among the Japanese who migrated to Hawaii and quadrupled among those who chose to live in California according to a 1975 study. What is surprising is that this increase has been observed regardless of blood pressure or cholesterol levels, and seems rather directly related to the abandonment of the traditional Japanese way of life by migrants.

Since the 1970s, the average cholesterol level of the Japanese has nonetheless increased, but despite this and the high rate of smoking in this country, the incidence of coronary heart disease remains substantially lower in Japan than in the West. To better understand these differences, a 2003 study compared the risk factors and diets of Japanese living in Japan with third- and fourth-generation Japanese migrants living in Hawaii in the United States. Men’s blood pressure was significantly higher among Japanese than among Japanese-Americans, while there was no significant difference for women. Far fewer Japanese were treated for hypertension than in Hawaii. More Japanese people (especially men) smoked than Japanese-Americans. Body mass index, blood levels of LDL cholesterol, total cholesterol, glycated hemoglobin (an indicator for diabetes), and fibrinogen (a marker of inflammation) were significantly lower in Japan than in Hawaii. HDL cholesterol (the “good” cholesterol) was higher in the Japanese than in the Japanese-Americans. The dietary intake of total fat and saturated fatty acids (harmful to cardiovascular health) was lower in Japan than in Hawaii. In contrast, the intake of polyunsaturated fatty acids and omega-3 fatty acids (beneficial for good cardiovascular health) was higher in Japan than in Hawaii. These differences may partly explain the lower incidence of coronary heart disease in Japan than in Western industrialized countries.

In other words, even if these migrants have the same basic risk as their compatriots who have remained in the country of origin (age, sex and heredity), the simple fact of adopting the lifestyle of their host country is enough to significantly increase their risk of cardiovascular disease.

Although the Japanese diet is different from those of Western countries, it has similar characteristics to the Mediterranean diet. Why not prepare delicious Japanese soy dishes from time to time (for example, tofu, edamame, miso soup), drink green tea, eat less meat, sugar and starch and more fish? Not only will your meals be more varied, but you could enjoy the health benefits of the Japanese diet.

Effects of cold on cardiovascular health

Effects of cold on cardiovascular health

OVERVIEW

  • Exposure to cold causes a contraction of blood vessels as well as an increase in blood pressure, heart rate, and the work of the heart muscle.
  • The combination of cold and exercise further increases stress on the cardiovascular system.
  • Cold temperatures are associated with increased cardiac symptoms (angina, arrhythmias) and an increased incidence of myocardial infarction and sudden cardiac death.
  • Patients with coronary artery disease should limit exposure to cold and dress warmly and cover their face when exercising.

Can the sometimes biting cold of our winters affect our overall health and our cardiovascular health in particular? For an exhaustive review of the literature on the effects of cold on health in general, see the summary report (in French only) recently published by the Institut national de santé publique du Québec (INSPQ). In this article, we will focus on the main effects of cold on the cardiovascular system and more specifically on the health of people with cardiovascular disease.

Brief and prolonged exposure to cold both affect the cardiovascular system, and exercise in cold weather further increases stress on the heart and arteries. Numerous epidemiological studies have shown that cardiovascular disease and mortality increase when the ambient temperature is cold and during cold spells. The winter season is associated with a greater number of cardiac symptoms (angina, arrhythmias) and cardiovascular events such as hypertensive crisis, deep venous thrombosis, pulmonary embolism, aortic ruptures and dissections, stroke, intracerebral hemorrhage, heart failure, atrial fibrillation, ventricular arrhythmia, angina pectoris, acute myocardial infarction, and sudden cardiac death.

Mortality from cold
Globally, more temperature-related deaths were caused by cold (7.29%) than heat (0.42%). For Canada, 4.46% of deaths were attributable to cold (2.54% for Montreal), and 0.54% to heat (0.68% for Montreal).

Intuition may lead us to believe that it is during periods of extreme cold that more adverse health effects occur, but the reality is quite different. According to a study that analyzed 74,225,200 deaths that occurred between 1985 and 2012 in 13 large countries on 5 continents, extreme temperatures (cold or hot) accounted for only 0.86% of all deaths, while the majority of cold-related deaths occurred at moderately cold temperatures (6.66%).

Acute effects of cold on the cardiovascular system of healthy people

Blood pressure. The drop in skin temperature upon exposure to cold is detected by skin thermoreceptors that stimulate the sympathetic nervous system and induce a vasoconstriction reflex (decrease in the diameter of the blood vessels). This peripheral vasoconstriction prevents heat loss from the surface of the body and has the effect of increasing systolic (5–30 mmHg) and diastolic (5–15 mmHg) blood pressure.

Heart rate. It is not greatly affected by exposure of the body to cold air, but it increases rapidly when, for example, the hand is dipped in ice water (“cold test” used to make certain diagnoses, such as Raynaud’s disease) or when very cold air is inhaled. Cold air usually causes a slight increase in heart rate in the range of 5 to 10 beats per minute.

Risk of atheromatous plaque rupture?
Post-mortem studies have shown that rupture of atheroma plaques (deposits of lipids on the lining of the arteries) is the immediate cause of over 75% of acute myocardial infarctions. Could cold stress promote the rupture of atheromatous plaques? In a laboratory study, mice exposed to cold in a cold room (4°C) for 8 weeks saw their blood LDL cholesterol level and the number of plaques increase compared to mice in the control group (room at 30°C). Furthermore, it is known that exposure to cold induces aggregation of platelets in vitro and increases coagulation factors in vivo in patients during colder days (< 20°C) compared to warmer days (> 20°C). Combined, these cold effects could help promote plaque rupture, but to date no study has been able to demonstrate this.

Risk of cardiac arrhythmias
Arrhythmias are a common cause of sudden cardiac death. Even in healthy volunteers, the simple act of dipping a hand in cold water while holding the breath can cause cardiac arrhythmias (nodal and supraventricular tachycardias). Could cold promote sudden death in people at risk for or with heart disease? Since arrhythmias cannot be detected post-mortem, it is very difficult to prove such a hypothesis. If it turns out that exposure to cold air can promote arrhythmias, people with coronary artery disease may be vulnerable to the cold since the arrhythmia would amplify the oxygenated blood deficit that reaches the heart muscle.

Effects of cold combined with exercise
Both cold and exercise individually increase the heart’s demand for oxygen, and the combination of the two stresses has an additive effect on this demand (see these two review articles, here and here). Exercising in the cold therefore results in an increase in systolic and diastolic blood pressure as well as in the “double product” (heart rate x blood pressure), a marker of cardiac work. The increased demand for oxygen by the heart muscle caused by cold weather and exercise increases blood flow to the coronary arteries that supply the heart. The rate of coronary blood flow increases in response to cold and exercise combined compared to exercise alone, but this increase is mitigated, especially in older people. Therefore, it appears that cold causes a relative lag between the oxygen demand from the myocardium and the oxygenated blood supply during exercise.

In a study carried out by our research team, we exposed 24 coronary patients with stable angina to various experimental conditions in a cold room at – 8°C, specifically a stress test with electrocardiogram (ECG) in cold without antianginal medication and an ECG at + 20°C. We then repeated these two ECGs after taking one drug (propranolol) that slows the heart rate, and then another drug (diltiazem) that causes dilation of the coronary arteries. The results showed that the cold caused mild to moderate ischemia (lack of blood supply) to the myocardium in only 1/3 of the patients. When ECG was done with medication, this effect was completely reversed. The two drugs have been shown to be equally effective in reversing this ischemia. The conclusion: cold had only a modest effect in 1/3 of patients and antianginal drugs are as effective in cold (- 8°C) as at + 20°C.

In another study in the same type of patients, we compared the effects of an ECG at – 20°C with an ECG at + 20°C. The results showed that at this very cold temperature, all patients presented with angina and earlier ischemia.

Hypertension
The prevalence of hypertension is higher in cold regions or during winter. Cold winters increase the severity of hypertension and the risk of cardiovascular events such as myocardial infarction and stroke in people with hypertension.

Heart failure
The heart of patients with heart failure is not able to pump enough blood to maintain the blood flow necessary to meet the body’s needs. Only a few studies have looked at the effects of cold on heart failure. Patients with heart failure do not have much leeway when the heart’s workload increases in cold weather or when they need to exert sustained physical effort. Cold combined with exercise further decreases the performance of people with heart failure. For example, in a study we conducted at the Montreal Heart Institute, cold reduced exercise time by 21% in people with heart failure. In the same study, the use of beta-blocker class antihypertensive drugs (metoprolol or carvedilol) significantly increased exercise time and reduced the impact of cold exposure on the functional capacity of patients. Another of our studies indicates that treatment with an antihypertensive drug from the class of angiotensin converting enzyme inhibitors, lisinopril, also mitigates the impact of cold on the ability to exercise in patients with heart failure.

Cold, exercise and coronary heart disease
It is rather unlikely that the cold alone could cause an increase in the work of the heart muscle large enough to cause a heart attack. Cold stress increases the work of the heart muscle and therefore the blood supply to the heart in healthy people, but in coronary patients there is usually a reduction in blood flow to the coronary arteries. The combination of cold and exercise puts coronary patients at risk of cardiac ischemia (lack of oxygen to the heart) much earlier in their workout than in warm or temperate weather. For this reason, people with coronary artery disease should limit exposure to cold and wear clothes that keep them warm and cover their face (significant heat loss in this part of the body) when working out outdoors in cold weather. In addition, the exercise tolerance of people with coronary heart disease will be reduced in cold weather. It is strongly recommended that coronary heart patients do indoor warm-up exercises before going out to exercise outdoors in cold weather.