Childhood obesity, a ticking time bomb for cardiometabolic diseases

Childhood obesity, a ticking time bomb for cardiometabolic diseases

OVERVIEW

  • Obesity rates among Canadian children and teens have more than tripled over the past 40 years.
  • Childhood obesity is associated with a marked increase in the risk of type 2 diabetes and cardiovascular disease in adulthood, which can significantly reduce healthy life expectancy.
  • Policies to improve the diet of young people are key to reversing this trend and preventing an epidemic ofcardiometabolic diseases affecting young adults in the coming years.

One of the most dramatic changes to have occurred in recent years is undoubtedly the marked increase in the number of overweight children. For example, obesity rates among Canadian children and adolescents have more than tripled over the past 40 years. Whereas in 1975, obesity was a fairly rare problem affecting less than 3% of children aged 5–19, the prevalence of obesity has made a gigantic leap since that time, affecting nearly 14% of boys and 10% of girls in 2016 (Figure 1). If data on overweight is added to these figures, then approximately 25% of young Canadians are overweight (a similar trend is observed in Quebec). This prevalence of obesity appears to have plateaued in recent years, but recent US surveys suggest that the COVID-19 pandemic may have caused an upsurge in the number of overweight young people, particularly among 5-11-year-olds.

Figure 1. Increase in the prevalence of obesity among Canadian children over the past 40 years. From NCD Risk Factor Collaboration (2017).

Measuring childhood obesity
Although not perfect, the most common measure used to determine the presence of overweight in young people under the age of 19 is the body mass index (BMI), calculated by dividing the weight by the square of height (kg/m²). However, the values obtained must be adjusted according to age and sex to take into account changes in body composition during growth, as shown in Figure 2.

Figure 2. WHO growth standards for boys aged 5–19 living in Canada. Data comes from WHO (2007).

Note that a wide range of BMI on either side of the median (50th percentile) is considered normal. Overweight children have a BMI higher than that of 85–95% of the population of the same age (85th-95th percentile), while the BMI of obese children is higher than that of 97% of the population of the same age (97th percentile and above). Using z-scores is another way to visualize childhood overweight and obesity. This measurement expresses the deviation of the BMI from the mean value, in standard deviation. For example, a z-score of 1 means that the BMI is one standard deviation above normal (corresponding to overweight), while z-scores of 2 and 3 indicate, respectively, the presence of obesity and severe obesity.

This marked increase in the proportion of overweight children, and particularly obese children, is a worrying trend that bodes very badly for the health of future generations of adults. On the one hand, it is well established that obesity during childhood (and especially during adolescence) represents a very high risk factor for obesity in adulthood, with more than 80% of obese adults who were already obese during their childhood. This obesity in adulthood is associated with an increased risk of a host of health problems, both from a cardiovascular point of view (hypertension, dyslipidemia, ischemic diseases) and the development of metabolic abnormalities (hyperglycemia, resistance to insulin, type 2 diabetes) and certain types of cancer. Obesity can also cause discrimination and social stigma and therefore have devastating consequences on the quality of life, both physically and mentally.

Another very damaging aspect of childhood obesity, which is rarely mentioned, is the dramatic acceleration of the development of all the diseases associated with overweight. In other words, obese children are not only at higher risk of suffering from the various pathologies caused by obesity in adulthood, but these diseases can also affect them at an early age, sometimes even before reaching adulthood, and thus considerably reduce their healthy life expectancy. These early impacts of childhood obesity on the development of diseases associated with overweight are well illustrated by the results of several recent studies on type 2 diabetes and cardiovascular disease.

Early diabetes
Traditionally, type 2 diabetes was an extremely rare disease among young people (it was even called “adult diabetes” at one time), but its incidence has increased dramatically with the rise in the proportion of obese young people. For example, recent US statistics show that the prevalence of type 2 diabetes in children aged 10–19 has increased from 0.34 per 1000 children in 2001 to 0.67 in 2017, an increase of almost 100% since the beginning of the millennium.

The main risk factors for early diabetes are obesity, especially severe obesity (BMI greater than 35) or when the excess fat is mainly located in the abdomen, a family history of the disease, and belonging to certain ethnic groups. However, obesity remains the main risk factor for type 2 diabetes: in obese children (4–10 years) and adolescents (11–18 years), glucose intolerance is frequently observed during induced hyperglycemia tests, a phenomenon caused by the early development of insulin resistance. A characteristic of type 2 diabetes in young people is its rapid development. Whereas in adults, the transition from a prediabetic state to clearly defined diabetes is generally a gradual process, occurring over a period of 5–10 years, this transition can occur very quickly in young people, in less than 2 years. This means that the disease is much more aggressive in young people than in older people and can cause the early onset of various complications, particularly at the cardiovascular level.

A recent study, published in the prestigious New England Journal of Medicine, clearly illustrates the dangers that arise from early-onset type 2 diabetes, appearing during childhood or adolescence. In this study, the researchers recruited extremely obese children (BMI ≥ 35) who had been diagnosed with type 2 diabetes in adolescence and subsequently examined for ten years the evolution of different risk factors and pathologies associated with this disease.

The results are very worrying, because the vast majority of patients in the study developed one or more complications during follow-up that significantly increased their risk of developing serious health problems (Figure 3). Of particular note is the high incidence of hypertension, dyslipidemia (LDL-cholesterol and triglyceride levels too high), and kidney (nephropathies) and nerve damage (neuropathies) in this population, which, it should be remembered, is only 26 years on average. Worse still, almost a third of these young adults had 2 or more complications, which obviously increases the risk of deterioration of their health even more. Moreover, it should be noted that 17 serious cardiovascular accidents (infarction, heart failure, stroke) occurred during the follow-up period, which is abnormally high given the young age of the patients and the relatively small number of people who participated in the study (500 patients).

Figure 3. Incidence of different complications associated with type 2 diabetes in adolescents. From TODAY Study Group (2021).

It should also be noted that these complications occurred despite the fact that the majority of these patients were treated with antidiabetic drugs such as metformin or insulin. This is consistent with several studies showing that type 2 diabetes is much harder to control in young people than in middle-aged people. The mechanisms responsible for this difference are still poorly understood, but it seems that the development of insulin resistance and the deterioration of the pancreatic cells that produce this hormone progress much faster in young people than in older people, which complicates blood sugar control and increases the risk of complications.

This difficulty in effectively treating early type 2 diabetes means that young diabetics are much more at risk of dying prematurely than non-diabetics (Figure 4). For example, young people who develop early diabetes, before the age of 30, have a mortality rate 3 times higher than the population of the same age who is not diabetic. This increase remains significant, although less pronounced, until about age 50, while cases of diabetes that appear at older ages (60 years and over) do not have a major impact on mortality compared to the general population. It should be noted that this increase in mortality affecting the youngest diabetics is particularly pronounced at a young age, around 40 years of age.

These results therefore show how early type 2 diabetes can lead to a rapid deterioration in health and take decades off life, including years that are often considered the most productive of life (forties and fifties). For all these reasons, type 2 diabetes must be considered one of the main collateral damages of childhood obesity.

Figure 4. Age-standardized mortality rates for diagnosis of type 2 diabetes. Standardized mortality rates represent the ratio of mortality observed in individuals with diabetes to anticipated mortality for each age group. From Al-Saeed et al. (2016).

Cardiovascular disease
In recent years, there has been an upsurge in the incidence of cardiovascular disease in young adults. This new trend is surprising given that mortality from cardiovascular diseases has been in constant decline for several years in the general population (thanks in particular to a reduction in the number of smokers and improved treatments), and one might have expected that young people would also benefit from these positive developments.

The data collected so far strongly suggests that the increase in the prevalence of obesity among young people contributes to this upsurge of premature cardiovascular diseases, before the age of 55. On the one hand, it has been shown that a genetic predisposition to develop overweight during childhood is associated with an increased risk of coronary heart disease (and type 2 diabetes) in adulthood. On the other hand, this increased risk has also been observed in long-term studies examining the association between the weight of individuals during childhood and the incidence of cardiovascular events once they have reached adulthood. For example, a large Danish study of over 275,000 school-aged children (7–13 years old) showed that each one-unit increase in BMI z-score at these ages (see legend to Figure 2 for the definition of the z-score) was associated with an increased risk of cardiovascular disease in adulthood, after 25 years (Figure 5).

This increased risk is directly proportional to the age at which children are overweight, i.e., the more a high BMI is present at older ages, the greater the risk of suffering a cardiovascular event later in adulthood. For example, an increase of 1 in the z -score of 13-year-old children is associated with twice as much of an increase in risk in adulthood as a similar increase in a 7-year-old child (Figure 5). Similar results are observed for girls, but the increased risk of cardiovascular disease is lower than for boys.


Figure 5. Relationship between body mass index in childhood and the risk of cardiovascular disease in adulthood. The values represent the risks associated with a 1-unit increase in BMI z-score at each age. From Baker et al. (2007).

Early atherosclerosis
Several studies suggest that the increased risk of cardiovascular disease in adulthood observed in overweight children is a consequence of the early development of several risk factors that accelerate the process of atherosclerosis. Autopsy studies of obese adolescents who died of non-cardiovascular causes (e.g., accidents) revealed that fibrous atherosclerotic plaques were already present in the aorta and coronary arteries, indicating an abnormally rapid progression of atherosclerosis.

As mentioned earlier, type 2 diabetes is certainly the worst risk factor that can generate this premature progression, because the vast majority of diabetic children and adolescents very quickly develop several abnormalities that considerably increase the risk of serious damage to blood vessels (Figure 3). But even without the presence of early diabetes, studies show that several risk factors for cardiovascular disease are already present in overweight children, such as hypertension, dyslipidemia, chronic inflammation, glucose intolerance or even vascular abnormalities (thickening of the internal wall of the carotid artery, for example). Exposure to these factors that begins in childhood therefore creates favourable conditions for the premature development of atherosclerosis, thereby increasing the risk of cardiovascular events in adulthood.

It should be noted, however, that the negative impact of childhood obesity on health in adulthood is not irreversible. Indeed, studies show that people who were overweight or obese during childhood, but who had a normal weight in adulthood, have a risk of cardiovascular disease similar to that of people who have been thin all their lives. However, obesity is extremely difficult to treat, both in childhood and in adulthood, and the best way to avoid prolonged chronic exposure to excess fat and damage to cardiovascular health (and health in general) which results from it is obviously to prevent the problem at the source by modifying lifestyle factors, which are closely associated with an increased risk of developing overweight, in particular the nature of the diet and physical activity (psychosocial stress may also play a role). Given the catastrophic effects of childhood obesity on health, cardiovascular health in particular, the potential for this early preventive approach (called “primordial prevention”) is immense and could help halt the current rise in diabetes and premature mortality affecting young adults.

Ideal cardiovascular health
A recent study shows how this primordial prevention approach can have an extraordinary impact on cardiovascular health. In this study, researchers determined the ideal cardiovascular health score, as defined by the American Heart Association (Table 1), of more than 3 million South Koreans with an average age of 20–39 years. Excess weight is a very important element of this score because of its influence on other risk factors also used in the score such as hypertension, fasting hyperglycemia and cholesterol.

Participants were followed for a period of approximately 16 years, and the incidence of premature cardiovascular disease (before age 55) was assessed using as the primary endpoint a combination of hospitalization for infarction, stroke, cardiac insufficiency, or sudden cardiac death.

Table 1. Parameters used to define the ideal cardiovascular health score. Since there is 1 point for each target reached, a score of 6 reflects optimal cardiovascular health. Adapted from Lloyd-Jones et al. (2010), excluding dietary factors that were not assessed in the Korean study.

As shown in Figure 6, cardiovascular health in early adulthood has a decisive influence on the risk of cardiovascular events that occur prematurely, before the age of 55. Compared to participants in very poor cardiovascular health at the start (score of 0), each additional target reached reduces the risk of cardiovascular events, with maximum protection of approximately 85% in people whose lifestyle allows achieving 5 or more ideal heart health targets (scores of 5 and 6). Similar results were obtained in the United States and show how early health, from childhood through young adulthood, plays a key role in preventing the development of cardiovascular disease during aging.

Figure 6. Influence of cardiovascular health in young adults on the risk of premature cardiovascular events. From Lee et al. (2021).

Yet our society remains strangely passive in the face of the rise in childhood obesity, as if the increase in body weight of children and adolescents has become the norm and that nothing can be done to reverse this trend. This lack of interest is really difficult to understand, because the current situation is a ticking time bomb that risks causing a tsunami of premature chronic diseases in the near future, affecting young adults. This is an extremely worrying scenario if we consider that our healthcare system, in addition to having to contend with diseases that affect an aging population (1 out of 4 Quebecers will be over 65 in 2030), will also have to deal with younger patients suffering from cardiometabolic diseases caused by overweight. Needless to say, this will be a significant burden on healthcare systems.

This situation is not inevitable, however, as governments have concrete legislative means that can be used to try to reverse this trend. Several policies aimed at improving diet quality to prevent disease can be quickly implemented:

  • Taxing sugary drinks. A simple and straightforward approach that has been adopted by several countries is to introduce a tax on industrial food products, especially soft drinks. The principle is the same as for all taxes affecting other products harmful to health such as alcohol and tobacco, i.e., an increase in prices is generally associated with a reduction in consumption. Studies that have examined the impact of this approach for soft drinks indicate that this is indeed the case, with reductions in consumption observed (among others) in Mexico, Berkeley (California) and Barbados. This approach therefore represents a promising tool, especially if the amounts collected are reinvested in order to improve the diet of the population (subsidies for the purchase of fruit and vegetables, for example).
  • Requiring clear nutrition labels on packaging. We can help consumers make informed choices by clearly indicating on the front of the product whether it is high in sugar, fat or salt, as is the case in Chile (see our article on this subject).
  • Eliminating the marketing of unhealthy foods for children. The example of Chile also shows that severe restrictions can be imposed on the marketing of junk food products by prohibiting the advertising of these products in programs or websites aimed at young people as well as by prohibiting their sale in schools. The United Kingdom plans to take such an approach very soon by eliminating all advertising online and on television of products high in sugar, salt and fat before 9 p.m., while Mexico has gone even further by banning all sales of junk food products to children.

There is no reason Canada should not adopt such approaches to protect the health of young people.

Cycling: A particularly beneficial exercise for the health of diabetics

Cycling: A particularly beneficial exercise for the health of diabetics

OVERVIEW

  • Exercise and physical activity bring many benefits for people with type 2 diabetes.
  • Among a large cohort of 110,944 people from 10 European countries, 7,459 people had type 2 diabetes, 37% of whom were cyclists.
  • After a 5-year follow-up, the researchers found that fewer premature deaths and deaths from cardiovascular disease occurred proportionately among cyclists than among non-cyclists.
  • Participants who started cycling after the start of the study also saw their risk of death significantly reduced, showing that it is never too late to get on that bike and reap the health benefits.

Diabetes increases the risk of developing cardiovascular disease and of dying prematurely from cardiovascular causes and from any cause. Regular physical activity and exercise reduce risk factors for cardiovascular disease in people with diabetes.

Benefits of aerobic exercise
In diabetics, aerobic training (brisk walking, running, cycling, etc.) increases insulin sensitivity, mitochondrial density (production of energy in cells), vascular reactivity, immune and pulmonary functions, and cardiac output. In addition, regular training lowers the level of glycated hemoglobin and triglycerides in the blood as well as blood pressure.

Benefits of resistance exercise
Diabetes is a risk factor for having poor muscle tone, and it can lead to a faster decline in muscle strength and function. A few mechanisms have been proposed to explain this phenomenon in diabetics, including: 1) endothelial dysfunction secondary to high blood glucose levels which cause vasoconstriction of the vessels that nourish muscles and 2) disruption of skeletal muscle energy metabolism through a dysfunction of the mitochondria (elements of the cell that produces its energy).

Benefits of resistance training (weightlifting, use of a resistance band, etc.) in the general population include improvements in muscle mass and strength, fitness, bone mineral density, insulin sensitivity, blood pressure, lipid profile, and cardiovascular health. For diabetics (type 2), resistance training improves blood sugar control, insulin resistance, blood pressure, muscle strength, lean body mass vs. fat mass.

Benefits of other types of exercise
People with diabetes are particularly affected by the loss of joint mobility, a condition caused in part by the build-up of end products of glycation that occurs during normal aging, but is accelerated by hyperglycemia. People with diabetes can therefore benefit from stretching exercises that allow them to increase the flexibility and mobility of their joints.

Cycling and mortality risk in diabetics
Is there one physical activity that is more beneficial than others to improve the health of people with diabetes and reduce the risk of premature death? A prospective study of 7,459 adults with diabetes, with an average age of 55.9 years, assessed whether there is an association between time spent cycling and cardiovascular mortality or from any cause. Participants, who had been diabetic for an average of 7.7 years at the start of the study, completed detailed questionnaires upon enrollment and 5 years later. Compared with participants who did not cycle at all (0 minutes/week), those who did had a lower risk of death from any cause, from 22% (1 to 59 min/week) to 32% (150 to 299 min/week). Reductions of the same order of magnitude (21 to 43%) were observed for cardiovascular mortality. These reductions in mortality risk were independent of other physical activities reported by participants and other confounding factors (level of education, smoking, adherence to the Mediterranean diet, total energy intake, occupational physical activity).

Another question the study researchers wanted to answer was whether stopping or starting to cycle during the 5-year follow-up had an effect on the risk of death of participants with diabetes. The results indicate that participants who cycled after the start of the study had a significantly lower risk of cardiovascular and all-cause mortality compared to non-cyclists. Participants who instead stopped cycling after starting the study had a similar risk of premature death to that of non-cyclists. It is therefore never too late to start cycling and reap significant health benefits, provided that this exercise is practised regularly, without interruption.

Other researchers found it surprising that the association between cycling and a reduction in the risk of mortality is independent of other physical activities. They point out that there is a relationship between the amount of physical activity and the reduction in mortality (4% reduction in risk per 15 minutes of additional physical activity per day) for healthy people and those with cardiovascular disease according to published data. They questioned whether a bias comparable to that of the “healthy worker effect” is not at issue here. This bias could be caused in this case by the fact that diabetics who cycle are healthier than those who do not, resulting in lower premature mortality. In their response to this criticism, the study authors say they agree that cyclists might be healthier than non-cyclists, but they say they did all they could to minimize this potential bias by adjusting the results to take into account risk factors for premature mortality, including diet, physical activity other than cycling, incidence of myocardial infarction and cancer, and excluding smokers, former smokers and individuals who play sports. The authors conclude that they are convinced that cycling can directly contribute to reducing premature mortality, but that in this type of study it is always possible that there are known or unknown confounding factors.

An earlier study had previously reported that cycling had advantages over other physical activities. This study was carried out about 20 years ago with 30,640 participants in the Copenhagen region of Denmark. In the 14.5 years of follow-up, people who cycled to work had a 40% lower risk of dying prematurely than non-cyclist participants, after accounting for possible confounding factors, including the amount of physical activity during leisure time.

Cycling requires being fit, having a good sense of balance, and having the financial means to buy a bicycle. In addition, cycling must be done in a safe environment, which is increasingly possible with the addition of cycle paths in recent years. In Quebec, cycling cannot be practised safely during the winter, namely for more than 4 months, but it is fortunately possible to ride a stationary bike at home or in training centres. In recent years, there has been real enthusiasm for cycling, including the electric bicycle, which allows older or less fit people to climb slopes without much effort. Let’s hope that this enthusiasm continues so that more people who are healthy or have a chronic illness can benefit from the health benefits of this extraordinary physical activity.

The benefits of extra virgin olive oil on cardiovascular health

The benefits of extra virgin olive oil on cardiovascular health

OVERVIEW

  • In addition to being an excellent source of monounsaturated fat, olive oil is the only vegetable oil that contains a significant amount of phenolic compounds with antioxidant and anti-inflammatory properties.
  • These molecules are found in much larger quantities in extra virgin quality oils compared to refined olive oils.
  • Several studies indicate that the presence of these phenolic compounds contributes to the many positive effects of extra virgin olive oil on cardiovascular health.

The traditional Mediterranean diet has several positive effects on cardiovascular health by improving the lipid profile (cholesterol, triglycerides) and by reducing chronic inflammation, blood pressure, blood sugar and the risk of diabetes. Several studies have clearly established that these effects result in a significant reduction in the risk of cardiovascular disease.

The Mediterranean diet is characterized by the abundant consumption of plant-based foods (fruits, vegetables, whole-grain cereals, legumes, nuts, herbs), a moderate intake of fermented dairy products (yogurt, cheese), fish, seafood and red wine as well as a low consumption of red meat and added sugars. It is therefore an exemplary diet, in which complex plant sugars are the main sources of carbohydrates and where the proteins come mainly from fish and legumes instead of red meat.

Another important feature of the Mediterranean diet is the daily use of large amounts (60–80 mL) of olive oil as the main source of fat for cooking. Several studies have reported that countries that are heavy consumers of olive oil have a much lower incidence of cardiovascular disease than those that consume mainly animal fats, suggesting a positive role of olive oil in this protective effect. Traditionally, these beneficial properties of olive oil have been attributed to its very high content (around 80%) of oleic acid, a monounsaturated fatty acid that contributes to its antioxidant properties. However, and unlike most vegetable oils, olive oil also contains a host of minor compounds (1–3% of the oil) that also play very important roles in its positive effects on cardiovascular health (see below). This is particularly the case for several phenolic compounds found exclusively in olive oil, including phenolic alcohols such as hydroxytyrosol and tyrosol and polyphenols of the secoiridoid family such as oleuropein, ligstroside, oleacein and oleocanthal (Figure 1).

 

Figure 1. Molecular structures of the main phenolic compounds of olive oil.


One fruit, several types of oils
Most vegetable oils come from seeds that have been extracted with an organic solvent (e.g. hexane) and subsequently heated to a high temperature to evaporate this solvent and remove impurities that give them an undesirable smell and flavour. These drastic procedures are not necessary for olive oil as the olives are simply pressed and the oil in the pulp is extracted by mechanical pressure, without using chemical processes or excessive heat.

Olive oils are classified according to the quality of the oil that is obtained by the pressing procedure (Figure 2). Good quality oils, i.e. those with low acidity (<2% free oleic acid) and that meet certain taste, bitterness and spiciness criteria are called “virgin” olive oils or, if their acidity is less than 0.8%, “extra virgin” olive oils. These oils contain the majority of the polyphenols in the starting olives and, after centrifugation and filtration, can be consumed as is.

On the other hand, some olive varieties give an inferior quality oil due to too high acidity (> 2%) and/or an unpleasant smell and taste that does not meet the established criteria. These oils, which are unfit for consumption, are called “lampantes” (a name which comes from their ancient use as fuel in oil lamps) and must be refined as is done for other vegetable oils, i.e. using different physicochemical procedures (neutralization with soda, high temperature bleaching and deodorization, hexane extraction, etc.). These steps remove the compounds responsible for the excess acidity and the unpleasant taste of the oil and produce a “neutral” olive oil that has lost its acidity and its flaws, but that is now devoid of the smell, flavour, colour and most of the phenolic components of the starting virgin olive oil. To stabilize these oils and improve their taste, a certain proportion (15–20%) of virgin olive oil is subsequently added and the final product, which is a mixture of refined olive oil and virgin olive oil, is what is sold in grocery stores as “pure olive oil” or simply “olive oil”.

In short, there are three main types of olive oil on the market: virgin olive oil (VOO), extra virgin olive oil (EVOO), and regular olive oil (OO).

Figure 2. The different types of olive oil. From Gorzynik-Debicka et al. (2018).

 

These manufacturing differences obviously have a huge impact on the amount of polyphenols present in virgin, extra virgin, and refined oils (Table 1). For OO-type olive oils (which contain refined oils), the polyphenols come exclusively from virgin olive oil that has been added to restore a minimum of taste and colour (from yellow to greenish) to the chemically treated oil. The amount of these polyphenols is therefore necessarily less than in VOO and EVOO and, as a general rule, does not exceed 25–30% of the content of these two oils. This difference is particularly striking for certain polyphenols of the secoiridoid family (oleuropein, oleocanthal, oleacein and ligstroside) whose concentrations are 3 to 6 times greater in EVOO than in OO (Table 1). It should be noted, however, that these values ​​can vary greatly depending on the origin and cultivar of the olives; for example, some extra virgin olive oils have been found to contain up to 10 times more hydroxytyrosol and tyrosol than regular olive oils. The same goes for other polyphenols like oleocanthal: an analysis of 175 distinct extra virgin olive oils from Greece and California revealed dramatic variations between the different oils, with concentrations of the molecule ranging from 0 to 355 mg/kg.

It should also be mentioned that even if the quantities of phenolic compounds in regular olive oil are lower than those found in virgin and extra virgin oils, they nevertheless largely exceed those present in other vegetable oils (sunflower, peanut, canola, soy), which contain very little or none at all.

FamilyMoleculesOO (mg/kg)VOO (mg/kg)EVOO (mg/kg)
Secoiridoidsoleocanthal38.95 ± 9.2971.47 ± 61.85142.77 ± 73.17
oleacein57.37 ± 27.0477.83 ± 256.09251.60 ± 263.24
oleuropein (aglycone)10.90 ± 0.0095.00 ± 116.0172.20 ± 64.00
ligstroside (aglycone)15.20 ± 0.0069.00 ± 69.0038.04 ± 17.23
Phenolic alcoholshydroxytyrosol6.77 ± 8.263.53 ± 10.197.72 ± 8.81
tyrosol4.11 ± 2.245.34 ± 6.9811.32 ± 8.53
Flavonoidsluteolin1.17 ± 0.721.29 ± 1.933.60 ± 2.32
apigenin0.30 ± 0.170.97 ± 0.7111.68 ± 12.78
Phenolic acidsp-coumaric -0.24 ± 0.810.92 ± 1.03
ferulic -0.19 ± 0.500.19 ± 0.19
cinnamic - -0.17 ± 0.14
caffeic -0.21 ± 0.630.19 ± 0.45
protocatechuic -1.47 ± 0.56 -
Table 1. Comparison of the content of phenolic compounds in olive oil (OO), virgin olive oil (VOO) and extra virgin olive oil (EVOO). Please note that the large standard deviations of the mean values reflect the huge variations in polyphenol content depending on the region, cultivar, degree of fruit ripeness, and olive oil manufacturing process. Adapted from Lopes de Souza et al. (2017).

 

Anti-inflammatory spiciness
The amounts of polyphenols contained in a bottle of olive oil are not indicated on its label, but it is possible to detect their presence simply by tasting the oil. The polyphenols in olive oil are indeed essential to the organoleptic sensations so characteristic of this oil, in particular the sensation of tickling or stinging in the throat caused by good quality extra virgin oils, what connoisseurs call “ardour”. Far from being a defect, this ardour is considered by experts as a sign of a superior quality oil and, in tasting competitions, the “spiciest” oils are often those that receive the highest honours.

It is interesting to note that it is by tasting different olive oils that a scientist succeeded, by coincidence, in identifying the molecule responsible for the sensation of spiciness caused by extra virgin olive oil (see box).

Plant ibuprofen

Chance often plays a role in scientific discoveries, and this is especially true when it comes to the discovery of the molecule responsible for the typical irritation caused by olive oil. On a trip to Sicily (Italy) to attend a conference on the organoleptic properties of different foods, Dr. Gary Beauchamp and his colleagues were invited by the organizers of the event to a meal where guests were encouraged to taste extra virgin olive oil from olive trees cultivated on their estate. Even though it was the first time he had tasted this type of olive oil, Dr. Beauchamp was immediately struck by the tingling sensation in his throat, which was similar in every way to that caused by ibuprofen, and that he had experienced multiple times as part of his work to replace acetaminophen (paracetamol) with ibuprofen in cough syrups. Suspecting that olive oil contained a similar anti-inflammatory drug, Dr. Beauchamp and his team subsequently managed to isolate the molecule responsible for this irritation, a polyphenol they called “oleocanthal”. They subsequently discovered that oleocanthal had, like ibuprofen, a powerful anti-inflammatory action and that regular consumption of extra virgin olive oil, rich in oleocanthal, provided an intake equivalent to about 10 mg of ibuprofen and therefore may contribute to the well-documented anti-inflammatory effects of the Mediterranean diet. 

But why is the stinging sensation of olive oil only felt in the throat? According to work carried out by the same group, this exclusive localization is due to a specific interaction of oleocanthal (and ibuprofen, for that matter) with a subtype of heat-sensitive receptor (TRPA1). Unlike other types of heat receptors, which are evenly distributed throughout the oral cavity (the TRPV1 receptor activated by the capsaicin of chili peppers, for example, and which causes the burning sensation of some particularly hot dishes), the TRPA1 receptor is located only in the pharynx and its activation by oleocanthal causes a nerve impulse signalling the presence of an irritant only in this region. In short, the more an olive oil stings in the back of the throat, the more oleocanthal it contains and the more anti-inflammatory properties it has. As a general rule, extra virgin olive oils contain more oleocanthal (and polyphenols in general) than virgin olive oils (see Table 1) and are therefore considered superior, both in terms of taste and their positive effects on health.

The superiority of extra virgin olive oil
Several studies have shown that the higher polyphenol content in extra virgin olive oil is correlated with a greater positive effect on several parameters of cardiovascular health than that observed for regular olive oil (see Table 2). For example, epidemiological studies carried out in Spain have reported a decrease of about 10–14% in the risk of cardiovascular disease among regular consumers of extra virgin olive oil, while regular consumption of olive oil had no significant effect. A role of phenolic compounds is also suggested by the EUROLIVE study where the effect of daily ingestion, over a period of 3 weeks, of 25 mL of olive oils containing small (2.7 mg/kg), medium (164 mg/kg), or high (366 mg/kg) amounts of polyphenols was compared. The results show that an increased intake of polyphenols is associated with an improvement in two important risk factors for cardiovascular disease: an increase in the concentration of HDL cholesterol and a decrease in oxidized LDL cholesterol levels. Collectively, the data gathered from the intervention studies indicate that the polyphenols found in extra virgin olive oil play an extremely important role in olive oil’s positive effects on cardiovascular health.

Measured parameterResultsSources
Incidence of cardiovascular disease10% reduction in risk for every 10 g/day of EVOO. No effect of regular OO.Guasch-Ferré et al. (2014)
14% reduction in risk for each 10 g/day of EVOO. No effect of regular OO.Buckland et al. (2012)
Lipid profileLinear increase in HDL cholesterol as a function of the amount of polyphenols.Covas et al. (2006)
Increase in HDL cholesterol only observed with EVOO.Estruch et al. (2006)
Blood glucoseEVOO improves postprandial glycemic profile (decrease in glucose levels and increased insulin).Violo et al. (2015)
Polyphenol-rich EVOO reduces fasting blood glucose and glycated hemoglobin (HbA1c) levels in diabetic patients.Santagelo et al. (2016)
InflammationEVOO, but not OO, induces a decrease in inflammatory markers (TXB(2) and LTB(4)).Bogani et al. (2017)
EVOO, but not OO, induces a decrease in IL-6 and CRP.Fitó et al. (2007)
EVOO, but not OO, decreases the expression of several inflammatory genes.Camargo et al. (2010)
EVOO, but not OO, decreases levels of inflammatory markers sICAM-1 and sVCAM-1.Pacheco et al. (2007)
Oxidative stressStrong in vitro antioxidant activity of phenolic compounds of olive oil.Owen et al. (2000)
Linear decrease in oxidized LDL levels as a function of the amount of polyphenols.Covas et al. (2006)
Lower levels of oxidized LDL after ingestion of EVOO compared to OO.Ramirez-Tortosa et al. (1999)
EVOO phenolic compounds bind to LDL particles and protect them from oxidation.de la Torre-Carbot et al. (2010)
EVOO induces the production of neutralizing antibodies against oxidized LDL.Castañer et al. (2011)
EVOO decreases urinary levels of 8-isoprostane, a marker of oxidative stress.Visioli et al. (2000)
EVOO positively influences the oxidative/antioxidant status of blood plasma.Weinbrenner et al. (2004)
Blood pressureEVOO causes a decrease in systolic and diastolic pressures in hypertensive women.Ruíz-Gutiérrez et al. (1996)
EVOO, but not OO, causes a decrease in systolic pressure in hypertensive coronary patients.Fitó et al. (2005)
EVOO improves postprandial endothelial dilation.Ruano et al. (2005)
EVOO increases the NO vasodilator and decreases systolic and diastolic pressures.Medina-Remón et al. (2015)
EVOO, but not OO, improves vessel dilation in pre-diabetic patients.Njike et al. (2021)
EVOO, but not OO, decreases systolic pressure by 2.5 mmHg in healthy volunteers.Sarapis et al. (2020)
Table 2. Examples of studies comparing the effect of EVOO and OO on several cardiovascular health parameters.

 

In addition to its multiple direct actions on the heart and vessels, it should also be noted that extra virgin olive oil could also exert an indirect beneficial effect, by blocking the formation of the metabolite trimethylamine N-oxide (TMAO) by intestinal bacteria. Several studies have shown that TMAO accelerates the development of atherosclerosis in animal models and is associated with an increased risk of cardiovascular events in clinical studies. Extra virgin olive oils (but not regular olive oils) contain 3,3-dimethyl-1-butanol (DMB), a molecule that blocks a key enzyme involved in TMAO production and prevents development of atherosclerosis in animal models fed a diet rich in animal protein. Taken together, these observations show that there are only advantages to favouring the use of extra virgin olive oil, both for its superior taste and its positive effects on cardiovascular health.

Some people may dislike the slightly peppery taste that extra virgin olive oil leaves in the back of the throat, but interestingly, this irritation is greatly reduced when the oil is mixed with other foods. According to a recent study, this attenuation of the pungent taste is due to the interaction of the polyphenols in the oil with the proteins in food, which blocks the activation of the heat receptors that are normally activated by these polyphenols. People who hesitate to use extra virgin olive oil because of its irritant side can therefore get around this problem and still enjoy the benefits of these oils simply by using it as the main fat when preparing a meal.

Reducing calorie intake by eating more plants

Reducing calorie intake by eating more plants

OVERVIEW

  • Twenty volunteers were fed a low-fat or low-carbohydrate diet in turn for two weeks.
  • Participants on the low-fat diet consumed an average of nearly 700 fewer calories per day than with the low-carbohydrate diet, a decrease correlated with a greater loss of body fat.
  • Compared to the low-carbohydrate diet, the low-fat diet also led to lower cholesterol levels, reduced chronic inflammation, and lowered heart rate and blood pressure.
  • Overall, these results suggest that a diet mainly composed of plants and low in fat is optimal for cardiovascular health, both for its superiority in reducing calorie intake and for its positive impact on several risk factors for cardiovascular disease.

It is estimated that there are currently around 2 billion overweight people in the world, including 600 million who are obese. These statistics are truly alarming because it is clearly established that excess fat promotes the development of several diseases that decrease healthy life expectancy, including cardiovascular disease, type 2 diabetes, and several types of cancer. Identifying the factors responsible for this high prevalence of overweight and the possible ways to reverse this trend as quickly as possible is therefore essential to improve the health of the population and avoid unsustainable pressures on public health systems in the near future.

Energy imbalance
The root cause of overweight, and obesity in particular, is a calorie intake that exceeds the body’s energy needs. To lose weight, therefore, it is essentially a matter of restoring the balance between the calories ingested and the calories expended.

It might seem simple in theory, but in practice most people find it extremely difficult to lose weight. On the one hand, it is much easier to gain weight than to lose weight. During evolution, we have had to deal with periods of prolonged food shortages (and even starvation, in some cases) and our metabolism has adapted to these deficiencies by becoming extremely efficient at accumulating and conserving energy in the form of fat. On the other hand, the environment in which we currently live strongly encourages overconsumption of food. We are literally overwhelmed by an endless variety of attractive food products, which are often inexpensive, easily accessible, and promoted by very aggressive marketing that encourages their consumption. The current epidemic of overweight and obesity thus reflects our biological predisposition to accumulate reserves in the form of fat, a predisposition that is exacerbated by the obesogenic environment that surrounds us.

Eating less to restore balance
The body’s innate tendency to keep energy stored in reserve as fat makes it extremely difficult to lose weight by “burning” those excess calories by increasing the level of physical activity. For example, a person who eats a simple piece of sugar pie (400 calories) will have to walk about 6.5 km to completely burn off those calories, which, of course, is difficult to do on a daily basis. This does not mean that exercise is completely useless for weight loss. Research in recent years shows that exercise can specifically target certain fat stores, especially in the abdominal area. Studies also show that regular physical activity is very important for long-term maintenance of the weight lost from a low-calorie diet. However, there is no doubt that it is first and foremost the calories consumed that are the determining factors in weight gain. Moreover, contrary to what one might think, levels of physical activity have hardly changed for the last thirty years in industrialized countries, and the phenomenal increase in the number of overweight people is therefore mainly a consequence of overconsumption of food. Exercise is essential for the prevention of all chronic diseases and for the maintenance of general good health, but its role in weight loss is relatively minor. For overweight people, the only realistic way to lose weight significantly, and especially to maintain these losses over prolonged periods, is thus to reduce calorie intake.

Less sugar or less fat?
How do we get there? First, it’s important to realize that the surge in the number of overweight people has coincided with a greater availability of foods high in sugar or fat (and sometimes both). All countries in the world, without exception, that have adopted this type of diet have seen their overweight rates skyrocket, so it is likely that this change in eating habits plays a major role in the current obesity epidemic.

However, the respective contributions of sugar and fat to this increase in caloric intake and overweight are still the subjectof vigorous debate:

1) On the one hand, it has been proposed that foods high in fat are particularly obesogenic, since fats are twice as high in calories as carbohydrates, are less effective in causing a feeling of satiety, and improve the organoleptic properties of foods, which generally encourages (often unconscious) overconsumption of food. Therefore, the best way to avoid overeating and becoming overweight would be to reduce the total fat intake (especially saturated fat due to its negative impact on LDL-cholesterol levels) and replace it with complex carbohydrates (vegetables, legumes, whole-grain cereals). This is colloquially called the low-fat approach, advocated for example by the Ornish diet.

2) On the other hand, the exact opposite is proposed, i.e. that it would be mainly carbohydrates that would contribute to overconsumption of food and to the increase in the incidence of obesity. According to this model, carbohydrates in foods in the form of free sugars or refined flours cause insulin levels to rise markedly, causing massive energy storage in adipose tissue. As a result, fewer calories remain available in the circulation for use by the rest of the body, causing increased appetite and overeating to compensate for this lack. In other words, it wouldn’t be because we eat too much that we get fat, but rather because we are too fat we eat too much.

3) By preventing excessive fluctuations in insulin levels, a diet low in carbohydrates would thus limit the anabolic effect of this hormone and, therefore, prevent overeating and the accumulation of excess fat.

Less fat on the menu, fewer calories ingested
To compare the impact of low-carb and low-fat diets on calorie intake, Dr. Kevin Hall’s group (NIH) recruited 20 volunteers who were fed each of these diets in turn for two weeks. The strength of this type of cross-study is that each participant consumes both types of diets and that their effects can therefore be compared directly on the same person.

As shown in Figure 1, the two diets studied were completely opposite of each other, with 75% of the calories in the low-fat (LF) diet coming from carbohydrates versus only 10% from fat, while in the low-carb (LC) diet, 75% of calories were in the form of fat, compared to only 10% from carbohydrates. The LF diet under study consisted exclusively of foods of plant origin (fruits, vegetables, legumes, root vegetables, soy products, whole grains, etc.), while the LC diet contained mainly (82%) animal foods (meat, poultry, fish, eggs, dairy products).

Figure 1. Comparison of the amounts of carbohydrates, fats and proteins present in the low-carbohydrate (LC) and low-fat (LF) diets consumed by study participants. Adapted from Hall et al. (2021).

The study shows that there is indeed a big difference between the two types of diets in the number of calories consumed by participants (Figure 2). Over a two-week period, participants who ate an LF (low-fat) diet consumed an average of nearly 700 calories (kcal) per day less than an LC (low-carbohydrate) diet. This difference in calorie intake is observed for all meals, both at breakfast (240 calories less for the LF diet), at lunch (143 calories less), at dinner (195 calories less), and during snacks taken between meals (128 calories less). This decrease is not caused by a difference in the appreciation of the two diets by the participants, as parallel analyses did not find any difference in the level of appetite of the participants, nor in the degree of satiety and satisfaction generated by the consumption of either diet. However, the LF diet was composed exclusively of plant-based foods and therefore much richer in non-digestible fibres (60 g per day compared to only 20 g for the LC diet), which greatly reduce the energy density of meals (quantity of calories per g of food) compared to the high-fat LC diet. It is therefore very likely that this difference in energy density contributes to the lower calorie intake observed for the low-fat diet.

Overall, these results indicate that a diet consisting of plants, and thus low in fat and high in complex carbohydrates, is more effective than a diet consisting mainly of animal products, high in fat and low in carbohydrates, to limit calorie intake.

Figure 2. Comparison of the daily calorie intake of participants on a low-carbohydrate (LC) or low-fat (LF) diet. From Hall et al. (2021).

Weight loss
Despite the significant difference in calorie intake observed between the two diets, their respective impact on short-term weight loss is more nuanced. At first glance, the LC diet appeared to be more effective than the LF diet in causing rapid weight loss, with about 1 kg lost on average in the first week and almost 2 kg after two weeks, compared to only 1 kg after two weeks of the LF diet (Figure 3). However, further analysis revealed that the weight loss caused by the LC diet was mainly in the form of lean mass (protein, water, glycogen), while this diet had no significant impact on fat loss during this period. Conversely, the LF diet had no effect on this lean body mass, but did cause a significant decrease in body fat, to around 1 kg after two weeks. In other words, only the LF diet caused a loss of body fat during the study period, which strongly suggests that the decrease in calorie intake made possible by this type of diet may facilitate the maintenance of astable body weight and could even promote weight loss in overweight people.

Figure 3. Comparison of changes in body weight (top), lean mass (middle), and body fat (bottom) caused by low-carbohydrate and low-fat diets. From Hall et al. (2021).

Cardiovascular risk factors
In addition to promoting lower calorie intake and fat loss, the LF diet also appears to be superior to the LC diet in terms of its impact on several cardiovascular risk factors (Table 1):

Cholesterol. It is well established that LDL cholesterol levels increase in response to a high intake of saturated fat (see our article on the issue). It is therefore not surprising that the LF diet, which contains only 2% of all calories as saturated fat, causes a significant decrease in cholesterol, both in terms of total cholesterol and LDL cholesterol. At first glance, the high-fat LC diet (containing 30% of the daily calorie intake as saturated fat) does not appear to have a major effect on LDL cholesterol; however, it should be noted that this diet significantly modifies the distribution of LDL cholesterol particles, in particular with a significant increase in small and dense LDL particles. Several studies have reported that these small, dense LDL particles infiltrate artery walls more easily and also appear to oxidize more easily, two key events in the development and progression of atherosclerosis. In sum, just two weeks of a high-fat LC diet was enough to significantly (and negatively) alter the atherogenic profile of participants, which may raise doubts about the long-term effects of this type of diet on cardiovascular health.

Table 1. Variations in certain risk factors for cardiovascular disease following a diet low in carbohydrates or low in fat. From Hall et al. (2021).

Branched-chain amino acids. Several recent studies have shown a very clear association between blood levels of branched-chain amino acids (leucine, isoleucine and valine) and an increased risk of metabolic syndrome and type 2 diabetes, two very important risk factors for cardiovascular diseases. In this sense, it is very interesting to note that the levels of these amino acids are almost twice as high after two weeks of the LC diet compared to the LF diet, suggesting a positive effect of a diet rich in plants and poor in fats in the prevention of these disorders.

Inflammation. Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries and can lead to the development of cardiovascular events such as myocardial infarction and stroke. Clinically, this level of inflammation is often determined by measuring levels of high-sensitivity C-reactive protein (hsCRP), a protein made by the liver and released into the blood in response to inflammatory conditions. As shown in Table 1, the LF diet significantly decreases the levels of this inflammatory marker, another positive effect that argues in favour of a plant-rich diet for the prevention of cardiovascular disease.

In addition to these laboratory data, the researchers noted that participants who were fed the LF diet had a slower heart rate (73 vs. 77 beats/min) as well as lower blood pressure (112/67 vs. 116/69 mm Hg) than observed following the LC diet. In the latter case, this difference could be related, at least in part, to the much higher sodium consumption in the LC diet compared to the LF diet (5938 vs. 3725 mg/day).

All of these results confirm the superiority of a diet mainly composed of plants on all the factors involved in cardiovascular health, whether in terms of lipid profile, chronic inflammation, or adequate control of calorie intake necessary to maintain body weight.

Control of inflammation through diet

Control of inflammation through diet

OVERVIEW

  • Chronic inflammation is actively involved in the formation and progression of plaques that form on the lining of the arteries, which can lead to the development of cardiovascular events such as myocardial infarction and stroke.
  • Two studies show that people whose diet is anti-inflammatory due to a high intake of plants (vegetables, fruits, whole grains), beverages rich in antioxidants (tea, coffee, red wine) or nuts have a significantly lower risk of being affected by cardiovascular disease.
  • This type of anti-inflammatory diet can be easily replicated by adopting the Mediterranean diet, rich in fruits, vegetables, legumes, nuts and whole grains and which has repeatedly been associated with a lower risk of cardiovascular events.

Clinically, the risk of having a coronary event is usually estimated based on age, family history, smoking and physical inactivity as well as a series of measures such as cholesterol levels, blood sugar level and blood pressure. The combination of these factors helps to establish a cardiovascular disease risk “score”, i.e. the likelihood that the patient will develop heart disease over the next ten years. When this score is moderate (10 to 20%) or high (20% and more), one or more specific drugs are generally prescribed in addition to recommending lifestyle changes in order to reduce the risk of cardiovascular events.

These estimates are useful, but they do not take into account other factors known to play an important role in the development of cardiovascular disease. This is especially true for chronic inflammation, a process that actively participates in the formation and progression of plaques that form on the lining of the arteries and can lead to cardiovascular events such as myocardial infarction and stroke.

The clinical significance of this chronic inflammation is well illustrated by studies of patients who have had a heart attack and are treated with a statin to lower their LDL cholesterol levels. Studies show that a high proportion (about 40%) of these people have excessively high blood levels of inflammatory proteins, and it is likely that this residual inflammatory risk contributes to the high rate of cardiovascular mortality (nearly 30%) that affects these patients within two years of starting treatment, despite a significant reduction in LDL cholesterol. In this sense, it is interesting to note that the canakinumab antibody, which neutralizes an inflammatory protein (interleukin-1 β), causes a slight but significant decrease in major cardiovascular events in coronary patients. Statins, used to lower LDL cholesterol levels, are also believed to have an anti-inflammatory effect (reduction in C-reactive protein levels) that would contribute to reducing the risk of cardiovascular events. One of the roles of inflammation is also demonstrated by the work of Dr. Jean-Claude Tardif of the Montreal Heart Institute, which shows that the anti-inflammatory drug colchicine significantly reduces the risk of recurrence of cardiovascular events.

Reducing chronic inflammation is therefore a very promising approach for decreasing the risk of cardiovascular disease, both in people who have already had a heart attack and are at a very high risk of recurrence and in healthy people who are at high risk of cardiovascular disease.

Anti-inflammatory diet
Two studies published in the Journal of the American College of Cardiology suggest that the nature of the diet can greatly influence the degree of chronic inflammation and, in turn, the risk of cardiovascular disease. In the first of these two articles, researchers analyzed the link between diet-induced inflammation and the risk of cardiovascular disease in 166,000 women and 44,000 men followed for 24 to 30 years. The inflammatory potential of the participants’ diet was estimated using an index based on the known effect of various foods on the blood levels of 3 inflammatory markers (interleukin-6, TNFα-R2, and C-reactive protein or CRP). For example, consumption of red meat, deli meats and ultra-processed industrial products is associated with an increase in these markers, while that of vegetables, fruits, whole grains and beverages rich in antioxidants (tea, coffee, red wine) is on the contrary associated with a decrease in their blood levels. People who regularly eat pro-inflammatory foods therefore have a higher inflammatory food index, while those whose diet is rich in anti-inflammatory foods have a lower index.

Using this approach, the researchers observed that a higher dietary inflammatory index was associated with an increased risk of cardiovascular disease, with a 40% increase in risk in those with the highest index (Figure 1). This increased risk associated with inflammation is particularly pronounced for coronary heart disease (acute coronary syndromes including myocardial infarction) with an increased risk of 46%, but seems less pronounced for cerebrovascular accidents (stroke) (28% increase in risk). The study shows that a higher dietary inflammation index was also associated with two risk markers for cardiovascular disease, higher circulating triglyceride levels as well as lower HDL cholesterol. These results therefore indicate that there is a link between the degree of chronic inflammation generated by diet and the risk of long-term cardiovascular disease, in agreement with data from a recent meta-analysis of 14 epidemiological studies that have explored this association.

Figure 1. Change in the risk of cardiovascular disease depending on the inflammatory potential of the diet. From Li et al. (2020). The dotted lines indicate the 95% confidence interval.

Anti-inflammatory nuts
A second study by a group of Spanish researchers investigated the anti-inflammatory potential of walnuts. Several epidemiological studies have reported that regular consumption of nuts is associated with a marked decrease in the risk of cardiovascular disease. For example, a recent meta-analysis of 19 prospective studies shows that people who consume the most nuts (28 g per day) have a lower risk of developing coronary artery disease (18%) or of dying from these diseases (23%). These reductions in the risk of cardiovascular disease may be explained in part by the decrease in LDL cholesterol (4%) and triglyceride (5%) levels observed following the consumption of nuts in intervention studies. However, this decrease remains relatively modest and cannot alone explain the marked reduction in the risk of cardiovascular disease observed in the studies.

The results of the Spanish study strongly suggest that a reduction in inflammation could greatly contribute to the preventative effect of nuts. In this study, 708 people aged 63 to 79 were divided into two groups, a control group whose diet was completely nut free and an intervention group, in which participants consumed about 15% of their calories daily in the form of walnuts (30–60 g/day). After a period of 2 years, the researchers observed large variations in the blood levels of several inflammatory markers between the two groups (Figure 2), in particular for GM-CSF (a cytokine that promotes the production of inflammatory cells) and interleukin-1 β (a highly inflammatory cytokine whose blood levels are correlated with an increased risk of death during a heart attack). This reduction in IL-1 β levels is particularly interesting because, as mentioned earlier, a randomized clinical study (CANTOS) has shown that an antibody neutralizing this cytokine leads to a reduction in the risk of myocardial infarction in coronary heart patients.

Figure 2. Reduction in blood levels of several inflammatory markers by a diet enriched with nuts. From Cofán et al. (2020). GM-CSF: granulocyte-monocyte colony stimulating factor; hs-CRP: high-sensitivity C-reactive protein; IFN: interferon; IL: interleukin; SAA: serum amyloid A; sE-sel: soluble E-selectin; sVCAM: soluble vascular cell adhesion molecule; TNF: tumour necrosis factor.

Taken together, these studies therefore confirm that an anti-inflammatory diet provides concrete benefits in terms of preventing cardiovascular disease. This preventative potential remains largely unexploited, as Canadians consume about half of all their calories in the form of ultra-processed pro-inflammatory foods, while less than a third of the population eats the recommended minimum of five daily servings of fruits and vegetables and less than 5% of the recommended three servings of whole grains. This imbalance causes most people’s diets to be pro-inflammatory, contributes to the development of cardiovascular diseases as well as other chronic diseases, including certain common cancers such as colon cancer, and reduces the life expectancy.

The easiest way to restore this balance and reduce inflammation is to eat a diet rich in plants while reducing the intake of industrial products. The Mediterranean diet, for example, is an exemplary anti-inflammatory diet due to its abundance of fruits, vegetables, legumes, nuts and whole grains, and its positive impact will be all the greater if regular consumption of these foods reduces that of pro-inflammatory foods such as red meat, deli meats and ultra-processed products. Not to mention that this diet is also associated with a high intake of fibre, which allows the production of anti-inflammatory short-chain fatty acids by the intestinal microbiota, and of phytochemicals such as polyphenols, which have antioxidant and anti-inflammatory properties.

In summary, these recent studies demonstrate once again the important role of diet in preventing chronic disease and improving healthy life expectancy.

The importance of properly controlling your blood pressure

The importance of properly controlling your blood pressure

OVERVIEW

  • Hypertension is the main risk factor for cardiovascular disease and is responsible for 20% of deaths worldwide.
  • Early hypertension, before the age of 45, is associated with an increased risk of cardiovascular disease, cognitive decline and premature mortality.
  • Adopting an overall healthy lifestyle (normal weight, not smoking, regular physical activity, moderate alcohol consumption, and a good diet including sodium reduction) remains the best way to maintain adequate blood pressure.

According to the latest data from the Global Burden of Disease Study 2019, excessively high blood pressure was responsible for 10.8 million deaths worldwide in 2019, or 19.2% of all deaths recorded. This devastating impact is a direct consequence of the enormous damage caused by hypertension on the cardiovascular system. Indeed, a very large number of studies have clearly shown that excessive blood pressure, above 130/80 mm Hg (see box for a better understanding of blood pressure values), is closely linked to a significant increased risk of coronary heart disease and stroke.

 

Systolic and diastolic

It is important to remember that blood pressure is always expressed in the form of two values, namely systolic pressure and diastolic pressure. Systolic pressure is the pressure of the blood ejected by the left ventricle during the contraction of the heart (systole), while diastolic pressure is that measured between two beats, during the filling of the heart (diastole). To measure both pressures, the arterial circulation in the arm is completely blocked using an inflatable cuff, then the cuff pressure is allowed to gradually decrease until blood begins to flow back into the artery. This is the systolic pressure. By continuing to decrease the swelling of the cuff, we then arrive at a pressure from which there is no longer any obstacle to the passage of blood in the artery, even when the heart is filling. This is the diastolic pressure. A blood pressure value of 120/80 mm Hg, for example, therefore represents the ratio of systolic (120 mm Hg) and diastolic (80 mm Hg) pressures.

As shown in Figure 1, this risk of dying prematurely from coronary heart disease is moderate up to a systolic pressure of 130 mm Hg or a diastolic pressure of 90 mm Hg, but increases rapidly thereafter to almost 4 times for pressures equal to or greater than 150/98 mm Hg. This impact of hypertension is even more pronounced for stroke, with an 8 times higher risk of mortality for people with systolic pressure above 150 mm Hg and 4 times higher for a diastolic pressure greater than 98 mm Hg (Figure 1, bottom graph). Consequently, high blood pressure is by far the main risk factor for stroke, being responsible for about half of the mortality associated with this disease.


Figure 1. Association between blood pressure levels and the risk of death from coronary heart disease or stroke. From Stamler et al. (1993).

Early hypertension
Blood pressure tends to increase with aging as blood vessels become thicker and less elastic over time (blood circulates less easily and creates greater mechanical stress on the vessel wall). On the other hand, age is not the only risk factor for high blood pressure: sedentary lifestyle, poor diet (too much sodium intake, in particular), and excess body weight are all lifestyle factors that promote the development of hypertension, including in younger people.

In industrialized countries, these poor lifestyle habits are very common and contribute to a fairly high prevalence of hypertensive people, even among young adults. In Canada, for example, as many as 15% of adults aged 20–39 and 39% of those aged 40–59 have blood pressure above 130/80 mm Hg (Figure 2).


Figure 2. Prevalence of hypertension in the Canadian population. Hypertension is defined as systolic pressure ≥ 130 mm Hg or diastolic pressure ≥ 80 mm Hg, according to the 2017 criteria of the American College of Cardiology and the American Heart Association. The data are from Statistics Canada.

This proportion of young adults with hypertension is lower than that observed in older people (three in four people aged 70 and over have hypertension), but it can nevertheless have major repercussions on the health of these people in the longer term. Several recent studies indicate that it is not only hypertension per se that represents a risk factor for cardiovascular disease, but also the length of time a person is exposed to these high blood pressures. For example, a recent study reported that onset of hypertension before the age of 45 doubles the risk of cardiovascular disease and premature death, while onset of hypertension later in life (55 years and older) has a much less pronounced impact (Figure 3). These findings are consistent with studies showing that early hypertension is associated with an increased risk of cardiovascular mortality and damage to target organs (heart, kidneys, brain). In the case of the brain, high blood pressure in young adults has been reported to be associated with an increased risk of cognitive decline at older ages. Conversely, a recent meta-analysis suggests that a reduction in blood pressure with the help of antihypertensive drugs is associated with a lower risk of dementia or reduced cognitive function.

Figure 3. Change in risk of cardiovascular disease (red) or death from all causes (blue) depending on the age at which hypertension begins. Adapted from Wang et al. (2020).

Early hypertension should therefore be considered an important risk factor, and young adults can benefit from managingtheir blood pressure as early as possible, before this excessively high blood pressure causes irreparable damage.

The study of barbershops
In African-American culture, barbershops are gathering places that play a very important role in community cohesion. For health professionals, frequent attendance at these barbershops also represents a golden opportunity to regularly meet Black men to raise their awareness of certain health problems that disproportionately affect them. This is particularly the case with hypertension: African American men 20 years and older have one of the highest prevalence of high blood pressure in the world, with as many as 59% of them being hypertensive. Also, compared to whites, Black men develop high blood pressure earlier in their lives and this pressure is on average much higher.

A recent study indicates that barbershops may raise awareness among African Americans about the importance of controlling their blood pressure and promoting the treatment of hypertension. In this study, researchers recruited 319 African Americans aged 35 to 79 who were hypertensive (average blood pressure approximately 153 mm Hg) and who were regular barbershop customers. Participants were randomly assigned to two groups: 1) an intervention group, in which clients were encouraged to see, in the barbershops, pharmacists specially trained to diagnose and treat hypertension and 2) a control group, in which barbers suggested that clients make lifestyle changes and seek medical attention. In the intervention group, pharmacists met regularly with clients during their barbershop visits, prescribed antihypertensive drugs, and monitored their blood pressure.

After only 6 months, the results obtained were nothing short of spectacular: the blood pressure of the intervention group fell by 27 mm Hg (to reach 125.8 mm Hg on average), compared to only 9.3 mm Hg (to reach 145 mm Hg on average) for the control group. Normal blood pressure (less than 130/80 mm Hg) was achieved in 64% of participants in the intervention group, while only 12% of those in the control group were successful. A recent update of the study showed that the beneficial effects of the intervention were long-lasting, with continued pressure reductions still observed one year after the start of the study.

These reductions in blood pressure obtained in the intervention group are of great importance, as several studies have clearly shown that pharmacological treatment of hypertension causes a significant reduction in the risk of cardiovascular diseases, including coronary heart disease and stroke, as well as kidney failure. This study therefore shows how important it is to know your blood pressure and, if it is above normal, to normalize it with medication or through lifestyle changes.

The importance of lifestyle
This last point is particularly important for the many people who have blood pressure slightly above normal, but without reaching values ​​as high as those of the participants of the study mentioned above (150/90 mm Hg and above). In these people, an increase in the level of physical activity, a reduction in sodium intake, and body weight loss can lower blood pressure enough to allow it to reach normal levels. For example, obesity is a major risk factor for hypertension and a weight loss of 10 kg is associated with a reduction in systolic pressure from 5 mm to 10 mm Hg. This positive influence of lifestyle is observed even in people who have certain genetic variants that predispose them to high blood pressure. For example, adopting an overall healthy lifestyle (normal weight, not smoking, regular physical activity, moderate alcohol consumption, and a good diet including sodium reduction) has been shown to be associated with blood pressure approximately 3 mm Hg lower and a 30% reduction in the risk of cardiovascular disease, regardless of the genetic risk. Conversely, an unhealthy lifestyle increases blood pressure and the risk of cardiovascular disease, even in those who are genetically less at risk of hypertension.

In short, taking your blood pressure regularly, even at a young age, can literally save your life. The easiest way to regularly check your blood pressure is to purchase one of the many models of blood pressure monitors available in pharmacies or specialty stores. Take the measurement in a seated position, legs uncrossed and with the arm resting on a table so that the middle of the arm is at the level of the heart. Two measurements in the morning before having breakfast and drinking coffee and two more measurements in the evening before bedtime (wait at least 2 hours after the end of the meal) generally give an accurate picture of blood pressure, which should be below 135/85 mm Hg on average according to Hypertension Canada.