La viande cultivée bientôt dans nos assiettes ?

La viande cultivée bientôt dans nos assiettes ?

EN BREF

  • Pour préserver l’environnement planétaire et produire suffisamment de nourriture pour suffire à la demande mondiale grandissante, les experts sont d’avis qu’il faudra dans l’avenir réduire l’élevage du bétail et la consommation de viande conventionnelle.
  • La viande cultivée est présentée comme une solution de remplacement durable à la viande d’élevage pour ceux qui veulent protéger l’environnement, mais qui ne souhaitent pas devenir végétariens.
  • Pour que la viande cultivée puisse être consommée à grande échelle, les techniques de production et l’acceptabilité sociale devront faire des progrès importants.

Il y a aujourd’hui 7,3 milliards d’êtres humains sur notre planète et il est prévu qu’il y en aura 9 milliards en 2050. L’organisation pour l’alimentation et l’agriculture (FAO) estime qu’en 2050, 70 % plus de nourriture sera requise pour combler la demande de la population croissante. Cela constitue un grand défi à cause des ressources et des terres arables qui ne sont pas illimitées. La production de viande (particulièrement celles de bœuf et de porc) est la plus gourmande en ressources et les experts sont d’avis qu’il ne serait pas responsable, voire même possible, de continuer à produire de plus en plus de ces aliments. Même si la consommation de viande diminue dans les pays développés, elle augmente au niveau mondial parce que les consommateurs des pays en voie de développement s’enrichissent et que la viande est considérée par la nouvelle classe moyenne de ces pays comme une nourriture luxueuse et désirable.

Parmi les solutions proposées pour se sortir de cette impasse, il y a la viande cultivée (ou viande de culture) qui est présentée comme une alternative durable à la viande d’élevage pour ceux qui veulent protéger l’environnement, mais qui ne souhaitent pas devenir végétariens. Notons que certains experts considèrent que la viande cultivée pose certains problèmes et qu’elle ne serait pas une alternative viable à la viande conventionnelle (voir ici et ici). Nous y reviendrons un peu plus loin dans le texte.

Comment la viande est-elle cultivée ?
Pour cultiver de la viande, il faut d’abord obtenir un échantillon de muscle d’un animal adulte vivant (par biopsie, sous anesthésie) et isoler une sous-population de cellules dites « souches » ou « satellites ». Ces cellules souches participent à la régénération du muscle et ont la capacité de se différencier en cellules musculaires proprement dites. Les cellules souches musculaires sont ensuite cultivées dans des bioréacteurs en présence d’un milieu nutritif contenant des facteurs de croissance qui induisent une prolifération rapide. Les cellules sont ensuite transformées en cellules musculaires qui forment des structures nommées « myotubes » d’au plus 0,3 mm de longueur et assemblées mécaniquement en tissu musculaire et ultimement en viande hachée ou en « steak » artificiel.

Utilisation problématique du sérum de veau fœtal et des stimulateurs de croissance
Le meilleur milieu de culture pour cultiver les cellules contient du sérum de veau fœtal, obtenu à partir du sang du fœtus après abatage d’une vache enceinte. La procédure utilisée habituellement (ponction cardiaque sur le fœtus de veau encore vivant) est jugée cruelle et inhumaine par plusieurs. Cela constitue un problème puisqu’il faudrait produire un grand nombre de veaux pour suffire à la demande de culture de viande à grande échelle, et cette utilisation est inacceptable pour les végétariens, les végétaliens et les adeptes du végétalisme intégral (véganisme). Il est heureusement maintenant possible, à l’échelle du laboratoire, de faire croître les cellules musculaires sans utiliser de sérum de veau fœtal. Il restera à appliquer la culture sans sérum à l’échelle industrielle. Pour remplacer le sérum de veau fœtal, l’industrie devra utiliser des facteurs et hormones de croissance qui devront être produits à une échelle industrielle. L’utilisation de stimulateurs de croissance est interdite dans l’Union européenne pour la production conventionnelle de viandes ; or on ne peut pas cultiver de la viande sans utiliser ces facteurs et hormones de croissances. La surexposition à certains stimulateurs de croissance peut avoir des effets nuisibles à la santé humaine, mais c’est un sujet de débat et plusieurs pays approuvent l’utilisation encadrée de stimulateurs en production animale (voir cet article de synthèse de l’INSPQ).

De la cellule au steak
Le muscle (viande) véritable est constitué de fibres musculaires organisées en faisceaux, de vaisseaux sanguins, nerfs, tissus conjonctifs, adipocytes (cellules graisseuses). Le simple fait de produire des cellules musculaires animales n’est donc pas suffisant pour recréer la viande. Voilà pourquoi en 2013 le premier plat préparé à partir de viande cultivée était une simple galette de type burger. Les industries qui développent la viande cultivée doivent maintenant tenter de recréer une structure en 3D qui ressemblera autant que possible à la viande véritable, une tâche qui s’avère difficile. Il s’agit de recréer l’expérience gustative associée à la consommation d’un steak, d’une cuisse de poulet ou d’une crevette.

Les chercheurs ont fait récemment des progrès et réussi à créer de petits échantillons de viande cultivée qui imitent la viande véritable. En utilisant une nouvelle approche, un groupe de recherche japonais a réussi à faire croître des cellules musculaires de bœuf en de longs filaments alignés en une seule direction, une structure qui ressemble beaucoup aux fibres musculaires. Lorsque ces cellules cultivées ont été stimulées par un courant électrique, les filaments se sont contractés, de manière similaire aux fibres musculaires. Les chercheurs de l’Université de Tokyo sont jusqu’à maintenant parvenus à produire des morceaux de viande cultivée de quelques grammes tout au plus. Le défi suivant sera de réussir à produire des morceaux de viande cultivée plus gros, soit jusqu’à 100 g, et à introduire d’autres tissus (vaisseaux sanguins, cellules graisseuses) afin d’imiter la viande de manière plus convaincante. Il est à noter que le milieu de culture utilisé dans cette étude contenait du sérum de veau fœtal, un ingrédient qui ne pourra pas être utilisé industriellement pour des raisons éthiques et économiques, comme nous l’avons indiqué plus haut.

De la viande de poulet cultivée
L’agence réglementaire sur les aliments à Singapour a approuvé en 2020 la vente de viande cultivée par l’entreprise américaine Eat Just. C’était la première fois que la vente de viande cultivée était permise par un état. Eat Just cultive de la viande de poulet en utilisant un procédé qui ne requiert pas d’antibiotiques. Cette viande cultivée est sécuritaire puisqu’elle contient de très faibles niveaux de bactéries, beaucoup moins que la viande de poulet conventionnelle. La viande de poulet cultivée contient un peu plus de protéines, a une composition en acides aminés plus variée, et contient plus de gras mono-insaturés que la viande conventionnelle. Les cellules musculaires sont cultivées dans des bioréacteurs de 1200 litres et combinées par la suite avec des ingrédients d’origine végétale, pour faire des croquettes de poulet. Le procédé approuvé par Singapour utilise du sérum de veau fœtal, mais Eat Just prévoit utiliser un milieu de culture sans sérum dans leurs prochaines productions.

Estimation du coût environnemental de la viande cultivée
La production de viande cultivée offre de nombreux avantages environnementaux, en comparaison à la viande conventionnelle, selon une étude publiée en 2011. Elle permettrait de réduire les émissions de gaz à effet de serre (GES) de 78 à 96 %, d’utiliser 7 à 45 % moins d’énergie et 82 à 96 % moins d’eau, selon le type de produit. Par contre, une étude plus récente et rigoureuse suggère qu’à long terme, l’impact de la viande cultivée sur l’environnement pourrait être plus important que celui associé à l’élevage. La production de viande cultivée va certes réduire le réchauffement climatique à court terme puisque moins de GES sera émis comparé à l’élevage du bétail. À très long terme cependant (c.-à-d. dans plusieurs centaines d’années), les modèles prédisent que cela ne serait pas nécessairement le cas, parce que le principal GES généré par le bétail, le méthane (CH4), ne s’accumule pas dans l’atmosphère contrairement au CO2 qui est pratiquement le seul GES généré par la viande cultivée. Une autre étude qui s’appuie sur les données provenant de 15 entreprises impliquées dans la production de viande cultivée conclut que celle-ci est moins dommageable pour l’environnement que la production de viande de bœuf, mais qu’elle a un impact plus important sur l’environnement que la production de viande de poulet, de porc et de « viande » végétale. Pour que le score environnemental de la viande cultivée soit plus favorable que celui des produits conventionnels, il faudrait que l’industrie n’utilise que de l’énergie durable.

Coût de la viande cultivée
Le premier burger de viande de bœuf cultivée a été produit en 2013 par un laboratoire néerlandais pour un coût estimé à 416 000 $ US. En 2015 le coût de production (à l’échelle industrielle) a été réduit à environ 12 $, et il est prévu que le prix pourrait être le même que celui de la viande conventionnelle d’ici une dizaine d’années. Les croquettes de poulet cultivé produites par Just Eat coûtaient chacune 63 $ à produire en 2019. Il reste donc du chemin à faire par les industries pour que la viande cultivée devienne suffisamment abordable pour que les consommateurs puissent en consommer sur une base régulière.

La viande cultivée : une alternative pour les Canadiens ?
Selon un sondage réalisé à l’université Dalhousie en 2018 auprès de 1027 Canadiens, 32,2 % des répondants prévoyaient réduire leur consommation de viande durant les 6 prochains mois. Cependant, la viande cultivée est peu populaire auprès des Canadiens puisque seulement 18,3 % des personnes consultées ont déclaré que ce nouveau type de « viande » représentait pour eux une alternative à la viande véritable. Il y a cependant de l’espoir puisque les consommateurs plus jeunes (40 ans et moins) semblent plus nombreux (34 %) à considérer la viande cultivée comme une alternative.

La viande cultivée remplacera-t-elle un jour la viande conventionnelle dans nos assiettes ? Bien qu’il reste des progrès à faire avant que cela ne soit possible, tant au niveau de la production que de l’acceptabilité sociale, on peut espérer que les efforts importants qui sont investis aboutiront à des résultats d’ici une dizaine d’années. Idéalement, pour notre santé et celle de la planète, il faudra réduire notre consommation de viande (de toute nature) et nous nourrir principalement de végétaux, comme c’est le cas pour le régime méditerranéen et d’autres régimes alimentaires traditionnels.

Les impacts environnementaux associés à la production de nourriture

Les impacts environnementaux associés à la production de nourriture

EN BREF

  • La production de nourriture est responsable d’environ 25 % des gaz à effet de serre émis annuellement, avec la moitié de ces GES qui provient de l’élevage des animaux, principalement sous forme de méthane.
  • Le secteur agricole est également une source importante de particules fines responsables de la pollution atmosphérique, la majorité de ces polluants provenant de l’ammoniac généré par l’élevage des animaux.
  • Globalement, une réduction de la consommation de produits animaux, particulièrement ceux issus de l’élevage bovin, est donc absolument incoutournable pour limiter le réchauffement climatique et améliorer la qualité de l’air.

Le dernier rapport du Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC ou, en anglais, Intergovernmental Panel on Climate Change, IPCC) confirme que, si rien n’est fait,  l’acumulation constante de gaz à effet de serre (GES) dans l’atmosphère va provoquer au cours du prochain siècle une hausse des températures supérieure à 1,5oC par rapport au niveau préindustriel, soit la cible visée par l’Accord de Paris pour limiter au minimum les effets négatifs du réchauffement climatique. Il y a donc urgence de diminuer drastiquement l’émission de ces gaz si on veut éviter que les conséquences de ce réchauffement, déjà visibles aujourd’hui, ne deviennent hors de contrôle et causent une augmentation de l’incidence d’événements climatiques extrêmes (sécheresses, vagues de chaleur, ouragans, feux de forêt), perturbent la vie sur Terre (extinction d’espèces, chute des rendements agricoles, hausse des maladies infectieuses, conflits armés) et augmentent l’incidence de plusieurs maladies liées aux chaleurs excessives.

Gaz carbonique et autres

Le principal gaz à effet de serre est le gaz carbonique (CO2), dont la concentration atteint maintenant 417 ppm, soit environ deux fois plus qu’à l’époque préindustrielle. Il faut cependant noter que d’autres gaz, même s’ils sont présents en quantités moindres, contribuent également au réchauffement planétaire : ces gaz, comme le méthane ou certaines molécules utilisées à des fins industrielles, captent la chaleur de façon beaucoup plus importante que le CO2 et possèdent donc un potentiel de réchauffement global (PRG) supérieur au CO2.  Par exemple, une tonne de méthane possède un PRG 28 fois plus élevé qu’une tonne de CO2 sur une période 100 ans, tandis que le PRG de certains gaz industriels comme l’hexafluorure de soufre peut atteindre presque 25,000 fois celui du CO2 (Tableau 1).  Autrement dit, même si plusieurs de ces gaz sont présents en quantités infimes, de l’ordre de quelques parties par milliard (10-9) ou même par billion (10-12), leur émission équivaut à plusieurs fois celle de CO2 et contribue donc significativement au réchauffement.

Tableau 1. Potentiel de réchauffement global de différents gaz à effet de serre1 Les valeurs sont pour l’année 2018, sauf pour le CO2 qui est pour 2020. Tiré de l’ Agence de protection environnementale (EPA) des États-Unis.2 Calculé pour une période 100 ans. Tiré de Greenhouse Gas Protocol. *ppm (part per million)= partie par million (10-6); **ppb (part per billion) = partie par milliard (10-9); ***ppt (part per trillion) = partie par billion (10-12).

Pour calculer cette contribution aux émissions globales de gaz à effet de serre, la méthode généralement utilisée consiste à convertir ces émissions en équivalents de CO2 (CO2eq) en multipliant leur quantité dans l’atmosphère par leur PRG respectif. Par exemple 1 kg de SF6 équivaut à 23,500 kg (23,5 tonnes) de CO2 (1 kg x 23,500 = 23,500 CO2eq), tandis qu’il faut 1000 kg de méthane pour atteindre une quantité équivalente de CO2 (1000 kg x 28 = 28,000 CO2eq). Lorsqu’on applique cette méthode à l’ensemble des gaz, on estime que 75 % des émissions de gaz à effet de serre sont sous forme de CO2, le reste provenant du méthane (17 %), de l’oxyde nitreux (protoxyde d’azote) (6 %) et des différents gaz fluorés (2 %) (Figure 1).  Figure 1. Répartition des émissions de gaz à effet de serre. Adapté de Ritchie et Roser (2020).

Sources d’émissions

L’utilisation des énergies fossiles pour soutenir les activités humaines (transport, production d’électricité, chauffage, différents procédés industriels) représente la principale source de gaz à effet de serre, comptant pour environ les trois quarts des émissions totales (Figure 2).  Cette énorme « empreinte carbone » implique que la lutte au réchauffement climatique nécessite forcément une transition vers des sources d’énergie plus « propres », notamment en ce qui concerne le transport et la production d’électricité. C’est particulièrement vrai dans un pays comme le Canada, où nous émettons en moyenne 20 tonnes de CO2eq par personne par année, ce qui nous classe, avec les États-Unis et l’Australie, parmi les pires producteurs de GES dans le monde (le Québec fait quant à lui meilleure figure, avec environ 10 tonnes de CO2eq par personne par année).

Figure 2. Contribution du secteur alimentaire à la production annuelle de gaz à effet de serre.  Adapté de Ritchie et Roser (2020).

Un autre secteur d’activité qui contribue significativement aux émissions de gaz à effet de serre, mais dont on entend pourtant beaucoup moins parler, est la production de nourriture.  On estime en effet qu’environ 25 % de l’ensemble de ces gaz provient de la production et la distribution des aliments, une proportion qui grimperait à 33 % lorsqu’on tient compte du gaspillage alimentaire. Le secteur alimentaire impliqué dans la production de protéines animales est responsable à lui seul de la moitié de ces émissions de GES liées à la nourriture, principalement en raison du méthane produit par le bétail et l’aquaculture (31%) (voir l’encadré). L’élevage du bétail requiert également de grands espaces, créés dans certains cas par une déforestation massive (en Amazonie, par exemple) qui élimine d’énormes surfaces de végétaux pouvant séquestrer le CO2.  L’élevage requiert également de grandes quantités de plantes fourragères et donc l’utilisation d’engrais azotés pour accélérer la croissance de ces plantes. Le CO2 et l’oxyde nitreux relâché dans l’atmosphère lors de la production de ces engrais s’ajoutent donc au bilan de GES générés par l’élevage.

D’où vient le méthane ?

Le méthane (CH4) est le produit final de la décomposition de la matière organique. La méthanogenèse est rendue possible par certains microorganismes anaérobies du domaine des archées (les méthanogènes) qui réduisent le carbone, présent sous forme de CO2 ou de certains acides organiques simples (l’acétate, par exemple) en méthane, selon les réactions suivantes :

CO+ 4 H2 → CH4 + 2 H2O

CH3COOH → CH4 + CO2

Le méthane généré par l’élevage provient principalement de la fermentation des produits carbonés à l’intérieur du système digestif des ruminants. Chez ces animaux, la digestion de la matière végétale génère des acides gras volatils (acétate, propionate, butyrate), qui sont absorbés par l’animal et utilisés comme source d’énergie, et mènent en parallèle à la production de méthane, aux environs de 500 L par jour par animal, celui-ci étant en majeure partie relâché par la bouche de l’animal.  On estime que globalement, le bétail émet environ 3,1 Gigatonnes de CO2-eq sous forme de méthane, ce qui représente presque la moitié de l’ensemble des émissions de méthane d’origine anthropogénique.

L’aquaculture est une autre forme d’élevage en pleine expansion, représentant maintenant plus de 60 % de l’apport global en poisson et fruit de mer de l’alimentation humaine. Bien que les émissions de GES de ce secteur soient encore très inférieures à celles liées au bétail, les mesures récentes indiquent néanmoins une forte augmentation de son potentiel de réchauffement global, principalement en raison d’une hausse de la production de méthane. Dans ces systèmes, les sédiments accumulent les résidus de nourriture utilisée pour la croissance des poissons et fruits de mer ainsi que les excréments générés par ces animaux. La transformation de cette matière organique mène à la production de méthane qui peut par la suite diffuser dans l’atmosphère.

Mentionnons enfin que la majorité des systèmes d’aquaculture sont situés en Asie, où ils sont souvent établis dans des régions précédemment occupées par les mangroves, ces écosystèmes situés le long des côtes et deltas des régions tropicales.  La destruction de ces mangroves (très souvent pour l’élevage de crevettes) est très dommageable pour le réchauffement planétaire, car les forêts de mangroves emmagasinent collectivement environ 4 milliards de tonnes de CO2 et leur élimination a donc un impact concret sur le climat.

Une bonne façon de visualiser l’impact de l’élevage sur la production de GES est de comparer les émissions associées à différents aliments d’origine animale et végétale en fonction de la quantité de protéines contenues dans ces aliments (Figure 3). Ces comparaisons montrent clairement que les produits dérivés de l’élevage, la viande de bœuf en particulier, représentent une source beaucoup plus importante de GES que les végétaux : la production de 100 g de protéines de bœuf, par exemple, génère en moyenne 100 fois plus de GES que la même quantité de protéines provenant des noix ou des légumineuses. Cela est vrai même pour la viande de bœuf produit de façon traditionnelle, c’est-à-dire provenant d’animaux qui se nourrissent exclusivement d’herbe : ces animaux croissent plus lentement et donc  émettent du méthane pendant une plus grande période, ce qui annule les bénéfices qui pourraient être associés à la séquestration du CO2 par l’herbe qui leur sert de nourriture. Figure 3.  Comparaison des niveaux de GES générés lors de la production de différentes sources de protéines. D’après Poore et Nemecek (2018), tel que modifié par Eikenberry (2018).

Ces énormes différences de GES associés à la production des aliments de notre quotidien montrent donc clairement que nos choix alimentaires peuvent avoir une influence significative sur le réchauffement planétaire.  Puisque la majeure partie des émissions des GES proviennent de l’élevage, il est évident que c’est la réduction de la consommation de viande, et des produits d’origine animale dans son ensemble, qui aura le plus d’impact positif.  Ces bénéfices peuvent être observés même lors d’une diminution assez modeste de l’apport en viande, comme dans l’alimentation méditerranéenne, ou simplement par la substitution des produits issus des ruminants (viande de bœuf et produits laitiers) par d’autres sources de protéines animales (volailles, porc, poisson) (Figure 4).   Évidemment, une réduction plus draconienne de l’apport en viande est encore plus bénéfique, que ce soit par l’adoption d’une alimentation flexitarienne (apport élevé en végétaux, mais peu de viande et de produits d’origine animale), végétarienne (pas de produits animaux, à l’exception des œufs, produits laitiers et parfois de poissons) et végétalienne (aucun produit d’origine animale). Ceci reste vrai même si les végétaux consommés proviennent de l’étranger et parcourent parfois de longues distances, car contrairement à une idée reçue, le transport compte pour une faible proportion (moins de 10 %) des GES associés à un aliment donné. Figure 4. Potentiel d’atténuation des émissions de GES par différents modes d’alimentation. Adapté de IPCC (2019).

Il est impossible de décarboniser complètement la production de nourriture, surtout dans un monde où il y a plus de 9 milliards d’individus à nourrir quotidiennement. Par contre, il n’y a aucun doute qu’on peut réduire significativement cette empreinte GES de l’alimentation en diminuant la consommation de produits issus des ruminants, comme la viande de bœuf et les produits laitiers.  Ceci est extrêmement important, car le statu quo est intenable : selon des modèles récents, même si les émissions de GES provenant des énergies fossiles cessaient immédiatement, on ne réussirait tout de même pas à atteindre l’objectif d’un réchauffement maximal de 1,5oC en raison des émissions produites par le système de production de nourriture actuel.

Un autre aspect qu’on néglige souvent de mentionner est à quel point cet impact positif  d’une réduction des produits de l’élevage bovin peut être rapide et significatif : même si le méthane est un GES presque 30 fois plus puissant que le CO2, sa vie dans l’atmosphère est de beaucoup plus courte durée, environ 10-20 ans vs plusieurs milliers d’années pour le CO2. Concrètement, cela signifie qu’une baisse immédiate des émissions de méthane, par exemple suite à une diminution drastique de la consommation de viande de bœuf et de produits laitiers, peut avoir des effets mesurables sur les niveaux de GES dans les années qui suivent et représente donc la façon la plus rapide et efficace de ralentir le réchauffement planétaire.

Pollution alimentaire

En plus de participer aux émissions globales de GES, un autre impact environnemental de la production de nourriture est sa contribution à la pollution atmosphérique.  Cet impact négatif du secteur alimentaire ne doit pas être négligé, car si l’influence du réchauffement climatique causé par les GES se fera surtout sentir à moyen et plus long terme, les polluants atmosphériques ont quant à eux un effet immédiat sur la santé : la pollution de l’air représente actuellement la 7e cause de mortalité prématurée à l’échelle mondiale, étant directement responsable d’environ 4 millions de décès annuellement (Figure 5). Dans certains pays, les États-Unis par exemple, on estime que l’agriculture et l’élevage seraient responsables d’environ 20 % de cette mortalité liée à la pollution atmosphérique. Figure 5. Principales causes de mortalité prématurée à l’échelle mondiale. Notez que la pollution atmosphérique est le seul facteur de risque d’origine environnementale, non lié au mode de vie.  Tiré de GBD 2016 Risk Factors Collaborators (2016).

Ce sont surtout les particules fines de de 2,5 microns et moins (PM2,5) qui sont responsables de ces impacts négatifs de la pollution atmosphérique sur la santé.  En raison de leur petite taille, ces particules pénètrent facilement les poumons jusqu’aux alvéoles pulmonaires où elles passent directement aux vaisseaux sanguins pulmonaires puis à toutes les artères du corps. Elles y produisent alors une réaction inflammatoire et un stress oxydatif qui endommagent l’endothélium vasculaire, cette fine couche de cellules qui recouvre la paroi interne des artères et qui assure leur bon fonctionnement. Les artères se dilatent donc moins facilement et ont donc plus tendance à se contracter, ce qui nuit à la circulation normale du sang. Pour toutes ces raisons, ce sont les maladies cardiovasculaires (maladies coronariennes et AVC) qui représentent la principale conséquence de l’exposition aux particules fines, étant à elles seules responsables d’environ 80 % de l’ensemble des décès causés par la pollution de l’air ambiant (Figure 6). Figure 6. Répartition des décès prématurés (en millions) causés par les particules fines PM2.5. Notez la prédominance des maladies cardiovasculaires comme cause de mortalité liée à la pollution atmosphérique.  Adapté de Lelieveld et coll. (2015).

Particules primaires et secondaires

Les particules fines peuvent être émises directement par les sources polluantes (PM2,5 primaires) ou encore de façon indirecte, suite à la combinaison de plusieurs particules distinctes présentes dans l’atmosphère (PM2.5 secondaires) (Figure 7). Une grande partie des PM2.5  primaires sont sous forme de carbone suie (aussi appelé carbone noir), produites par la combustion incomplète de combustibles fossiles (diesel et charbon, surtout) ou de biomasses (feux de forêt, par exemple). Le carbone suie est également associé à divers composés organiques (hydrocarbures aromatiques polycycliques), d’acides, de métaux, etc. qui contribuent à sa toxicité après l’inhalation. Ces particules peuvent être transportées en altitude sur de très longues distances et, une fois déposées, être remises en suspension sous l’action du vent. En zone urbaine, cette remise en suspension s’effectue également sous l’action du trafic routier.  Ces turbulences associées au trafic automobile sont également responsables de la production d’une autre classe de PM2.5 primaires, les poussières.

Les PM2.5 secondaires, quant à elles, sont formées à partir de précurseurs comme le dioxyde de soufre (SO2), les oxydes d’azote (NOx), différents composés organiques volatils contenant du carbone (carbone organique) ainsi que l’ammoniac (NH3). Les réactions chimiques qui gouvernent l’interaction entre ces différentes substances volatiles pour former les particules fines secondaires sont extraordinairement complexes, mais mentionnons seulement qu’il est bien établi que la présence de l’ion ammonium (NH4+), dérivé de l’ammoniac (NH3), neutralise la charge négative de certains gaz et favorise ainsi leur agrégation sous forme de particules fines (Figure 7). La présence de NH3 dans l’atmosphère représente donc souvent une étape limitante dans la formation de ces particules fines secondaires et une réduction de ces émissions peut donc avoir des effets concrets sur l’amélioration de la qualité de l’air. Figure 7. Représentation schématique des mécanismes de formation des particules fines PM2.5.

C’est d’ailleurs ce rôle important de l’ammoniac dans la formation des particules fines secondaires qui explique la contribution du secteur de la production de la nourriture à la pollution atmosphérique.  L’agriculture et l’élevage sont en effet responsables de la quasi-totalité des émissions anthropogéniques d’ammoniac, une conséquence de l’élevage intensif du bétail, de l’épandage des fumiers et lisiers et de la production industrielle d’engrais azotés.

Une étude américaine illustre bien cette contribution de l’ammoniac d’origine agricole aux impacts négatifs de la pollution atmosphérique sur la santé.  Dans cette étude, les chercheurs montrent que sur les quelque 18,000 décès causés annuellement par la pollution dérivée du secteur agricole, la grande majorité (70%) de ces décès sont une conséquence des émissions d’ammoniac (et donc des PM2.5 secondaires), tandis que l’émission de PM2.5 primaires, provenant du labourage, de la combustion des résidus agricoles et de la machinerie, est responsable du reste. Puisque la grande majorité des émissions d’ammoniac proviennent des excréments d’animaux et de l’utilisation d’engrais naturels (fumier et lisier) ou de synthèse pour cultiver la nourriture de ces animaux, il n’est pas étonnant que ce soit la production des aliments issus de l’élevage qui est la principale responsable des décès attribuables à la pollution d’origine agricole (Figure 8).   Figure 8. Répartition des décès causés annuellement par les PM2,5 provenant du secteur agricole aux États-Unis.  Notez que 70% de la mortalité est attribuable aux produits issus de l’élevage, principalement en raison de l’ammoniac généré par les animaux ainsi que par l’épandage de fumiers, de lisiers et d’engrais synthétiques pour la culture de plantes fourragères (maïs, soja). Tiré de Domingo et coll. (2021).

Lorsqu’on compare l’impact de différents aliments pour une même quantité de produit, on voit immédiatement que la production de viande rouge est particulièrement dommageable, étant responsable d’au moins 5 fois plus de décès que celle de la volaille, 10 fois plus que celle de noix et de graines et au moins 50 fois plus que celle d’autres végétaux comme les fruits et les légumes (Figure 9).

Figure 9. Comparaison de la mortalité liée aux PM2,5 selon le type d’aliment. Tiré de Domingo et coll. (2021).

En somme, que ce soit en termes de diminution de l’émission de GES ou des problèmes de santé associés à la pollution atmosphérique, l’ensemble des études montrent de façon sans équivoque qu’une réduction des dommages environnementaux causés par la production de nourriture passe obligatoirement par une diminution de la consommation de produits d’origine animale, en particulier ceux provenant de l’élevage bovin.  Un changement d’autant plus profitable que la réduction de l’apport en aliments d’origine animale, combinée à une augmentation de la consommation de végétaux est bénéfique pour la santé et pourrait éviter environ 11 millions de décès prématurés annuellement, soit une diminution de 20 %.

L’impact des feux de forêt sur la santé humaine

L’impact des feux de forêt sur la santé humaine

EN BREF

 

  • Les feux de forêt seront de plus en plus fréquents étant donné les changements climatiques qui favorisent des températures plus élevées et la sécheresse à plusieurs endroits du globe.
  • La fumée des feux de forêt produit des particules fines et ultrafines qui peuvent parcourir jusqu’à 1000 kilomètres et affecter la santé des populations à distance.
  • À court terme, la fumée des feux de forêt est principalement nocive pour la santé respiratoire. Certaines populations sont davantage à risque d’en subir les conséquences.
  • La hausse des incendies de forêt risque de contribuer à son tour aux perturbations climatiques.

De la Colombie-Britannique à l’île d’Eubée, les feux de forêt font de plus en plus partie du paysage mondial. Les impacts sanitaires de ces brasiers sur la santé à l’échelle planétaire sont sans équivoque. Portrait ici d’un phénomène naturel exacerbé par les changements climatiques.

Le récent rapport du GIEC, le groupe d’experts intergouvernemental sur l’évolution du climat, met en évidence que les feux de forêt risquent d’être plus fréquents et plus sévères étant donnée l’accélération des changements climatiques1. Des températures plus élevées favorisent l’apparition de foudre, qui représente la principale cause naturelle des feux de végétation. Un climat prédit comme plus sec et venteux favorisera la combustion et la propagation des feux de forêt 2. La saison des feux durera ainsi plus longtemps. D’ici 2039, la fréquence des incendies pourrait augmenter sur 37,8 % de la planète avec une hausse de seulement 1,2 °C de la température du globe. Avec une hausse de 3,5 °C, c’est 61,9 % du territoire mondial qui sera affecté par des feux plus fréquents d’ici 21003. Dans le scénario climatique le plus pessimiste où les émissions de gaz à effets de serre continuent d’augmenter, ce risque touchera jusqu’à 74 % de la surface terrestre mondiale d’ici la fin du siècle. Les États-Unis, le Canada, les pays de la Méditerranée, la Chine et l’Australie seront plus particulièrement touchés4.

Au Canada, on estime que plus de 8 000 feux surviennent chaque année. En moyenne, plus de 2,1 millions d’hectares sont détruits annuellement, soit l’équivalent de la superficie de l’île Victoria5. Dans l’ensemble des provinces, les conditions météorologiques seront de plus en plus propices aux feux de végétation. Les superficies brûlées pourraient ainsi doubler d’ici 21006.

La fumée qui émane des feux de forêt est formée de monoxyde de carbone, de dioxyde de carbone, d’oxydes d’azotes et d’autres composés organiques. Ces derniers varient selon plusieurs facteurs, comme le type de végétation et la température du feu par exemple7. Les feux produisent également des particules fines (diamètre ≤ 2,5 μm ou PM2,5) et ultrafines (diamètre ≤ 0.1 μm) qui peuvent parcourir jusqu’à 1000 kilomètres2. Ce sont principalement ces particules qui sont nocives pour la santé des populations vivant à distance des foyers d’incendie. Les particules fines produites par les feux de forêt pourraient également contenir plus de composés oxydatifs et pro-inflammatoires que la pollution atmosphérique urbaine causée par la combustion d’énergies fossiles8. Une étude suggère que les particules fines des feux de forêt pourraient être 10 fois plus nocives sur la santé humaine que celles produites par d’autres sources9.

Impact sur la santé humaine

Population à proximité des feux de forêt

Les populations à proximité des feux et les premiers répondants sont à risques de blessures directes en lien avec des brûlures, la chaleur et l’inhalation directe de la fumée. La fumée peut également irriter les yeux, causer des abrasions de cornées, réduire la visibilité et augmenter le risque d’accidents de la route dans les endroits à proximité des feux10.

 Santé respiratoire

Pour les populations locales ou à distance, les particules fines et ultrafines pénètrent dans les voies respiratoires et causent de l’inflammation jusqu’aux poumons. L’exposition aux particules fines cause principalement des symptômes respiratoires, comme de la toux ou une difficulté à respirer 7.

Beaucoup d’individus exposés ne présenteront pas de symptômes, mais d’autres sont plus susceptibles d’en développer. L’importance de l’exposition à la fumée et la présence de facteurs de vulnérabilité peuvent moduler la sévérité de la présentation clinique, telles que mises en évidence par la figure 1.

Figure 1. Impact clinique et subclinique des particules fines des feux de forêt. Tiré de Cascio (2018)11 .

Les patients asthmatiques ou ayant une maladie pulmonaire obstructive chronique risquent de subir plus d’exacerbations de leurs symptômes respiratoires, d’utiliser plus de médicaments pour les contrôler et de consulter davantage les services de santé 12, 13, 14.

Les personnes âgées de 65 et plus, les individus travaillant à l’extérieur et ceux résidant dans des quartiers défavorisés sont aussi plus vulnérables aux particules fines des feux15. Les enfants sont également plus susceptibles aux effets délétères de la fumée. Un système immunitaire moins bien développé et une fréquence respiratoire de base plus élevée chez les enfants pourraient expliquer cette vulnérabilité2.

Santé cardiovasculaire

Les particules fines produites spécifiquement par les incendies de forêt sont-elles nocives pour la santé cardiovasculaire ? La réponse reste à clarifier. Si certaines études mettent en évidence un risque significatif de maladies cardiovasculaires associées à l’exposition, d’autres ne l’observent pas 14, 16.

Parmi celles-ci, une recherche, analysant 2,5 millions d’hospitalisations dans des régions à 200 km d’incendies de végétation aux États-Unis, suggère que risque de maladies cardiovasculaires pourrait être comparable à celui de la pollution atmosphérique urbaine17.

Une autre étude menée sur les feux de forêt de 2015 en Californie démontre une association entre l’exposition à la fumée et l’augmentation des visites à l’urgence en lien avec des maladies cardiovasculaires, comme des infarctus du myocarde, des cardiopathies ischémiques, de l’insuffisance cardiaque, de l’hypertension et des arythmies. Les adultes de 65 ans et plus étaient particulièrement plus affectés. Une association entre la densité de la fumée et des évènements cérébrovasculaires, tels des accidents vasculaires cérébraux (AVC) a aussi été notée par les chercheurs18.

Des recherches australiennes ont mis aussi en évidence une association entre l’exposition aux particules fines des feux de végétation et le risque d’arrêt cardiaque en communauté19, 20.

À noter, l’exposition de courte durée (moins de 3 heures) à la fumée produite par la combustion du bois aurait le potentiel d’augmenter la rigidité artérielle centrale, la fréquence cardiaque et de diminuer la variabilité de la fréquence cardiaque. Autrement dit, la fumée de bois pourrait avoir des effets hémodynamiques nocifs sur le système cardiovasculaire 21.

En somme, les particules fines des feux s’ajoutent à celles engendrées par la pollution atmosphérique globale,  bien connues pour aggraver l’incidence de maladies cardiovasculaires (voir notre article à ce sujet).

Mortalité

L’exposition à la fumée des feux de forêt est associée à un risque augmenté de mortalité de causes non spécifiques et non accidentelles2.  Au Canada, de 2013 à 2018, de 620 à 2700 décès prématurés auraient été causés par les fumées des feux de forêt 22.

Les données actuelles ne nous permettent pas d’établir un lien clair entre l’exposition aux particules fines de la fumée de feu de forêt et une augmentation de la mortalité d’une cause spécifique, telle que respiratoire ou cardiaque.

Toutefois, notons que l’exposition à court terme aux fines particules engendrée par la pollution atmosphérique globale est associée à un risque augmenté de mortalité23. Même une exposition de courte durée aux particules fines pourrait accroître le risque de mortalité par infarctus du myocarde24. Autrement dit, la fumée des incendies de végétation pourrait être un facteur de risque de mortalité cardiovasculaire, mais ceci reste à préciser.

Autres effets sur la santé physique

Certaines études suggèrent que les femmes enceintes exposées aux particules fines des feux de forêt pourraient être plus à risque d’accoucher prématurément ou d’un bébé de petit poids à la naissance. Les données restent toutefois limitées et doivent être interprétées avec prudence2.

De plus, une étude a mis en relief une hausse marquée du nombre des cas d’influenza quelques mois suivant d’intenses feux de forêt dans la région du Montana aux États-Unis. Ceci pourrait suggérer une certaine vulnérabilité aux infections respiratoires à la suite d’une exposition à la fumée25. Les particules fines produites par les feux pourraient altérer la fonction des macrophages, des cellules du système immunitaire, réduisant la capacité du corps à bien se défendre contre les infections des voies respiratoires26.

En ce sens, certains chercheurs s’interrogent actuellement sur l’impact de la pollution atmosphérique des feux de forêt sur la transmission et la sévérité des cas de COVID-1927, 28, 29.

Somme toute, plus d’études sont requises pour mieux comprendre l’impact à moyen et long terme de la fumée des feux de forêt sur la santé humaine.

Santé mentale

Les feux de forêt peuvent être dévastateurs pour les communautés vivant à proximité. Les évacuations d’urgence, la perte de son environnement physique et social constituent d’intenses stresseurs qui peuvent avoir des impacts sur la santé mentale, particulièrement chez les enfants et les adolescents30. Les citoyens directement exposés aux feux de forêt sont plus à risque de dépression majeure, de troubles post-traumatiques et de troubles anxieux10. L’accessibilité à des services de soutien psychologique est ainsi essentielle pour les populations fortement touchées par les feux de forêt.

Impacts socio-économiques

Les feux de forêt sont aussi associés à une plus grande utilisation des ressources médicales. On observe davantage de consultations médicales à l’urgence, en clinique de médecine familiale et d’hospitalisations31. Au Canada, les coûts annuels en santé associés aux particules fines des feux de forêt sont estimés entre 410 millions et 1,8 milliard de dollars pour l’exposition à court terme. De 4,3 à 19 milliards de dollars sont attribuables à l’exposition chronique22. Ceci s’ajoute à de nombreux coûts sociétaux, comme ceux associés à la reconstruction des infrastructures, la contamination de l’eau potable par les cendres de la fumée et la perte de revenus11.

Santé environnementale

Bien qu’exacerbés par la pollution humaine, les feux de végétations eux-mêmes contribuent aux changements climatiques. Conjuguée à l’émission continue des gaz à effet de serre par les activités humaines, la perte de la végétation réduit l’absorption du dioxyde de carbone et contribue alors à l’augmentation de la température du globe. Les feux de forêt pourraient aussi contribuer à la fonte du pergélisol et ainsi favoriser l’émission de méthane2, un gaz dont le potentiel de réchauffement de l’atmosphère est 25 fois plus élevé que le dioxyde de carbone32.

Que faire face aux feux de forêt ?

S’informer de la qualité de l’air

Au Canada, la Cote Air santé permet d’informer les citoyens sur la qualité de l’air partout au pays33.  Le système de prévision FireWork, quant à lui, aide à prédire le déplacement de la fumée des feux de forêt34. L’application Météocan du gouvernement canadien est aussi un outil de prévision météorologique accessible à la population35. Les autorités locales sont également responsables d’émettre des avertissements en lien avec la qualité de l’air et des recommandations sanitaires en ce sens.

Réduire son exposition à la pollution atmosphérique

La figure 2 résume les principales mesures à prendre pour diminuer l’impact de la fumée des feux de forêt sur la santé.

Afin de limiter l’exposition aux particules fines à la suite d’un feu de forêt, les recommandations peuvent varier selon la localisation. L’efficacité nette de ces interventions reste à être précisée, car celles-ci s’appuient sur un nombre limité d’études à petite échelle36.

Il est conseillé d’éviter les activités à l’extérieur, incluant l’exercice physique, lorsque le niveau atmosphérique de particules fines est trop élevé15.

Afin de réduire l’infiltration de l’air extérieure dans les bâtiments, il est pertinent de fermer les portes et les fenêtres si la chaleur n’est pas trop accablante à l’intérieur. Des niveaux élevés de fines particules dans l’atmosphère peuvent être associés avec des vagues de chaleur intenses. Si la température à l’intérieure est trop élevée, la chaleur peut être dommageable pour la santé, particulièrement chez les personnes âgées ou souffrant de maladies chroniques. Régler le système de chauffage, ventilation et conditionnement d’air en mode recirculation et limiter l’utilisation de la hotte de cuisine sont aussi des mesures conseillées pour diminuer l’entrée d’air37.

Les purificateurs d’air avec filtres à HEPA (high efficient particulate air) diminuent efficacement le niveau des fines particules et sont recommandés par le gouvernement du Canada. Cependant, ceux-ci ne sont pas en mesure d’éliminer certains gaz polluants dans l’air. De plus, les purificateurs d’air peuvent être dispendieux et donc moins accessibles à tous2.

Quant au port du masque, celui de type chirurgical n’est pas conseillé, puisqu’il ne protège pas contre les particules fines. Les masques N95 offre une meilleure protection, mais ils nécessitent un test individuel d’ajustement, peuvent donner un faux sentiment de sécurité et ne sont pas adaptés pour les enfants. L’utilisation de ces masques est recommandée pour les travailleurs exposés à la fumée des feux38.

Finalement, la création d’espaces communautaires anti-fumée est aussi une mesure pouvant être mise en place par les autorités locales lorsque le niveau de pollution atmosphérique s’intensifie39.

Figure 2. Principales actions que les individus peuvent entreprendre pour réduire l’exposition à la fumée des feux de forêt et ses risques pour la santé. Tiré de Rongbin et coll. (2020)2

Prévenir les changements climatiques

À l’échelle mondiale, le principal objectif pour réduire les feux de forêt et leurs conséquences sanitaires serait de limiter l’augmentation de la température du globe à 1,5 °C au lieu du 2 °C visé par l’Accord de Paris. Cette augmentation limitée permettrait d’éviter plus de 50 % des incendies de forêt prédits si la température du globe hausse de 2 °C4.

Le rapport du GIEC met en lumière que même la cible du 2 °C sera dépassée sans interventions massives et imminentes. Des actions gouvernementales concertées sont ainsi plus que nécessaires pour réduire substantiellement les émissions anthropiques de gaz à effets de serre.

Conclusion

En somme, la pollution atmosphérique émise par les incendies de forêt est associée à une hausse de la morbidité et de la mortalité. Certains effets sur la santé restent à préciser. De plus en plus fréquents, ces feux témoignent de l’impact des changements climatiques sur la santé humaine. À court et long terme, des interventions de protection de la population et de prévention seront nécessaires afin d’atténuer les conséquences sociales, économiques et environnementales de ces bouleversements climatiques.

Références

(1) IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. et al. (eds.)]. Cambridge University Press.

(2) Rongbin X et coll. Wildfires, global climate change, and human health. N. Engl. J. Med. 2020; 383(22): 2173-2181.

(3) Hoegh-Guldberg OD et coll. (2018). Impacts of 1.5oC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

(4)  Sun Q et coll. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment Int. 2019; 128:125-136.

(5) Gouvernement du Canada  (2019). Base nationale de données sur les feux de forêt du Canada (BNDFFC).

(6) Gouvernement du Canada (2020). Changement climatique et feux.

(7) Benmarhnia T et coll. (2013). Les impacts sanitaires liés aux incendies de forêt. Institut national de santé publique du Québec, N° de publication : 1679.

(8) Wegesser TC et coll. California wildfires of 2008: coarse and fine particulate matter toxicity. Environ. Health Perspect. 2009; 117(6): 893–897.

(9) Aguilera RC et coll. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nature Commun. 2021; 12: 1493.

(10) Finlay SE et coll. Health impacts of wildfires. PLoS Curr. 2012; 4: e4f959951cce2c.

(11) Cascio WE. Wildland fire smoke and human health. Sci.Total Environ. 2018; 624: 586-595.

(12) Johnston FH et coll.  Vegetation fires, particulate air pollution and asthma: A panel study in the Australian monsoon tropics. Int. J. Environ. Health Res. 2006; 16(6): 391-404.

(13) Caamano-Isorna F et coll. Respiratory and mental health effects of wildfires: an ecological study in Galician municipalities (north-west Spain). Environ. Health 2011; 10: 48.

(14) Black C et coll. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 2017; 55: 186-195.

(15) Rice MB et coll. Respiratory impacts of wildland fire smoke: future challenges and policy opportunities. Ann. Am. Thorac. Soc. 2021; 18(6): 921-930.

(16) Reid CE et coll. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016; 124(9): 1334–1343.

(17) DeFlorio-Barker S et coll. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008–2010. Environ. Health Perspect. 2019; 127(3): 37006.

(18) Wettstein ZS et coll.  Cardiovascular and cerebrovascular emergency department visits associated with wildfire smoke exposure in California in 2015. J. Am. Heart Assoc. 2018; 7(8): e007492.

(19) Haikerwal A et coll. Impact of fine particulate matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 2015; 4(7): e001653.

(20) Dennekamp M et coll. Forest fire smoke exposures and out-of-Hospital cardiac arrests in Melbourne, Australia: a case-Crossover study. Environ. Health Perspect. 2015; 123(10): 954-624.

(21) Unosson J et coll. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part. Fibre Toxicol. 2013; 10: 20.

(22) Matz CJ et coll. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020; 725: 138506.

(23) Di Q et coll. Association of short-term exposure to air pollution with mortality in older adults. JAMA 2017; 318(24): 2446–2456.

(24) Liu Y et coll.  Short-term exposure to ambient air pollution and mortality from myocardial infarction. J. Am. Coll. Cardiol. 2021; 77(3): 271-281.

(25) Landguth EL et coll. The delayed effect of wildfire season particulate matter on subsequent influenza season in a mountain west region of the USA. Environ Int. 2020; 139: 105668.

(26) Migliaccio CT et coll.  (2013). Adverse effects of wood smoke PM(2.5) exposure on macrophage functions. Inhal Toxicol. 2013; 25(2): 67–76.

(27) Henderson SB. The COVID-19 pandemic and wildfire smoke: potentially concomitant disasters. Am. J. Public Health 2020; 110(8): 1140-1142.

(28) Kiser D et coll. SARS-CoV-2 test positivity rate in Reno, Nevada : association with PM2.5 during the 2020 wildfire smoke events in the western United States. J. Expo. Sci. Environ. Epidemiol., publié le 13 juillet 2021.

(29) Zhou X et coll. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Sci Adv. 2021; 7(33): eabi8789.

(30) Brown MRG et coll.  After the Fort McMurray wildfire there are significant increases in mental health symptoms in grade 7-12 students compared to controls. BMC Psychiatry 2019 ; 19: 18.

(31) Moore D et coll.  Population health effects of air quality changes due to forest fires in British Columbia in 2003: estimates from physician-visit billing data. Can. J. Public Health 2006; 97(2): 105-108.

(32) IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

(33) Gouvernement du Canada. Cote Air Santé.

(34) Gouvernement du Canada. Système de prévision de la fumée des feux de forêt pour le Canada (FireWork).

(35) Gouvernement du Canada. MétéoCAN.

(36) Laumbach RJ (2019). Clearing the air on personal interventions to reduce exposure to wildfire smoke. Ann. Am. Thorac. Soc. 2019; 16(7): 815-818.

(37) Gouvernement du Canada. Lignes directrices relatives aux espaces antifumée pendant les épisodes de fumée de feux de forêt.

(38) Environmental Health Services, BC Centre for Disease Control. (2014) Guidance for BC Public Health Decision Makers During Wildfire Smoke Events.

(39) Wheeler AJ et coll.  Can public spaces effectively be used as cleaner indoor air shelters during extreme smoke events? Int. J. Environ. Res. Public Health 2021; 18(8): 4085.

 

 

 

Les bienfaits de la nature sur la santé globale

Les bienfaits de la nature sur la santé globale

Voici un rapport rédigé pour le compte de la Société des établissements de plein air du Québec (Sépaq) sur les bienfaits de la nature sur la santé globale, produit en collaboration avec l’équipe de l’Observatoire de la prévention.  Le rapport peut être téléchargé sous format PDF ici.

1. Introduction
Tout au long de son évolution, l’être humain a toujours vécu en étroite symbiose avec la nature qui l’entoure, y puisant les ressources indispensables à sa survie. La révolution industrielle et les progrès technologiques des derniers siècles ont cependant transformé en profondeur cette relation privilégiée de l’homme avec son environnement naturel, notamment en entraînant une migration importante des populations des campagnes vers les villes. On estime que 54 % de la population mondiale habite présentement dans les centres urbains, une proportion qui pourrait atteindre 66 % d’ici 2050, et cette urbanisation croissante de la société cause une diminution drastique de la quantité et la qualité des contacts avec la nature. Cette carence pourrait engendrer plusieurs conséquences néfastes sur le bien-être de la population, car une multitude d’études ont montré que l’interaction des humains avec la nature génère plusieurs effets positifs sur la santé, autant du point de vue physique que psychologique. Si les bienfaits de la nature sur la santé sont reconnus intuitivement par la plupart des gens, l’intérêt des chercheurs et des professionnels de la santé à cet égard a connu un engouement récent. En effet, au cours des six dernières années, un nombre impressionnant de documents scientifiques divers ont été produits sur le sujet. La figure 1 illustre l’évolution des publications scientifiques portant sur les bienfaits de la nature pour la santé humaine au cours des trente dernières années.

Ce rapport vise à faire le point sur les connaissances actuelles en ce qui a trait aux effets de la nature sur la santé globale, c’est-à-dire physique et psychologique, en tenant compte de la littérature scientifique. La perspective de ce rapport est de tenter d’identifier les effets du milieu naturel, au-delà des effets propres à une activité, par exemple une activité physique comme la course, qui serait pratiquée en nature vs en milieu urbain. Tous les bienfaits concernant la santé globale d’un individu, tels que les bienfaits cognitifs, développementaux et comportementaux, ont été considérés comme pertinents. Le rapport fait également état des informations pertinentes quant à l’étendue des recherches démontrant ces bénéfices ainsi que les indicateurs mesurés. De plus, ce rapport tente d’ordonner les bénéfices de la nature en fonction de la qualité des preuves scientifiques publiées à ce jour. Pour le lecteur désirant approfondir ses connaissances sur la question, les annexes présentent une bibliographie dynamique afin de permettre une mise en relation rapide entre les conclusions et les sources premières d’informations.

2. Méthode

2.1 Recherche de la littérature

La base de données MEDLINE/PubMed a été consultée entre septembre et décembre 2020 pour identifier les études scientifiques portant sur les bienfaits de la nature pour la santé humaine. MEDLINE est une base de données bibliographique en sciences biomédicales qui contient plus de 30 millions de références. Une recherche booléenne avec les mots-clés [« forest bathing » OU « forest walking » OU « shinrin-yoku » OU « forest therapy » OU « nature therapy »] a trouvé 126 articles en langue anglaise et française. Une autre interrogation avec le mot-clé « phytoncides » a trouvé 38 articles. Plusieurs autres publications ont été identifiées dans les articles retenus à partir de l’interrogation des bases de données, couvrant les thèmes plus larges des bienfaits et bénéfices de la nature sur la santé, particulièrement dans les articles de synthèse, revues systématiques et méta-analyses publiés récemment.

Les publications ont été classées en deux listes selon le type d’étude, soient les études d’observation et les études d’intervention. Par leur nature, les études d’intervention génèrent dans la plupart des cas un niveau de preuve plus élevé que les études d’observation, d’où l’utilité de cette classification pour une appréciation générale du niveau de preuve. Dans un deuxième temps, nous avons procédé à l’évaluation du niveau de preuve scientifique pour chacune des études citées et indiqué les bienfaits physiologiques et psychologiques rapportés. Les deux listes se retrouvent sous forme de tableaux en annexe.

2.2 Appréciation du niveau de preuve scientifique
Le niveau de preuve scientifique a été apprécié à l’aide d’une grille d’évaluation où l’on distingue quatre niveaux de preuve et trois grades de recommandations. Le tableau 1 présente la grille d’évaluation utilisée dans ce rapport. Cette grille est largement utilisée dans divers domaines de la médecine et des sciences de la vie pour l’évaluation de la qualité de la preuve scientifique.

Tableau 1.  Niveau de preuve scientifique et grades de recommandation.


3. Résultats

Nous avons effectué une revue de la littérature des études sur les bienfaits de l’interaction avec la nature sur la santé globale. Environ la moitié des études retenues sont des études d’observation (voir le tableau 1 en annexe) et l’autre moitié sont des études d’intervention (voir le tableau 2 en annexe). Par leur nature, le premier type d’études n’apporte pas un niveau de preuve suffisant pour établir une relation causale, mais des études d’observation bien menées peuvent permettre d’identifier des associations significatives entre l’interaction avec la nature et un bienfait pour la santé (niveau 2 de preuve scientifique, présomption scientifique). Les études d’intervention dans lesquelles les participants sont assignés aléatoirement à différentes conditions expérimentales, comme une exposition ou une interaction dans un milieu naturel, comparativement à un milieu urbain, permettent de mieux documenter les relations causales entre l’exposition à la nature et la santé. Ce type d’étude devrait être priorisé pour établir une preuve scientifique solide.

Un grand nombre d’études d’intervention ont été réalisées au Japon où le « shinrin-yoku (森林浴) », qui se traduit littéralement par « bain de forêt », est devenu une activité populaire pour relaxer et contrôler le stress. Le bain de forêt a été introduit et promu par l’Agence des forêts du Japon au début des années 1980, mais ce n’est qu’à partir de la fin des années 1990 que les premières études scientifiques sur les effets physiologiques de ce type d’intervention ont été réalisées. Depuis, les chercheurs japonais ont fait de nombreuses études scientifiques sur les bienfaits du bain de forêt, la plupart étant des études d’interventions bien menées, mais généralement auprès d’un nombre peu élevé de participants. Le fait que la plupart des études aient été réalisées au Japon comporte des risques de biais, on ne peut donc être certain que les bienfaits observés au Japon le seront aussi sur les populations d’autres pays. Outre le fait que les Japonais constituent un groupe ethnique distinct et homogène, il y a un possible biais culturel puisque la forêt est considérée par les Japonais non seulement comme un lieu de ressourcement par le contact avec la nature, mais aussi comme un lieu sacré qui abrite des divinités (kami) et l’âme de défunts, selon les croyances de la religion shintoïste. Il y a donc un réel besoin de réaliser davantage d’études en Amérique du Nord et en Europe, dans un contexte géographique et ethnique différent de celui, unique, du Japon.

3.1 Bienfaits physiologiques

D’après notre évaluation, les bienfaits physiologiques de l’interaction avec la nature qui sont établis (Grade A, preuve scientifique établie) sont :

  • Réduction de la fréquence cardiaque
  • Réduction de la pression artérielle
  • Diminution de l’activité nerveuse sympathique
  • Augmentation de l’activité nerveuse parasympathique
  • Réduction des niveaux de cortisol (indicateur de stress)

Une méta-analyse (Ideno et coll., 2017) de 20 études auprès de 732 participants montre que la pression artérielle est significativement réduite lors d’un court séjour en forêt par rapport à un environnement non forestier. Selon une méta-analyse de 13 études auprès de 563 participants, le séjour en forêt réduit aussi significativement la fréquence cardiaque. Ces observations découlent d’un effet sur le système nerveux autonome. En effet, des études de bonne qualité montrent que lors d’un séjour en forêt, une diminution de l’activité nerveuse sympathique (impliquée dans la réponse au stress) et une augmentation de l’activité nerveuse parasympathique (impliquée dans la relaxation) sont observées chez les participants. Selon une méta-analyse (Antonelli et coll., 2019) de 8 études auprès de 99 participants, le niveau de cortisol salivaire est significativement moins élevé chez les participants après un séjour en forêt par comparaison avec un séjour dans un environnement urbain, une autre indication d’une réduction du stress physiologique par l’intervention. Le cortisol, une hormone sécrétée par les glandes corticosurrénales, est un régulateur métabolique agissant sur plusieurs organes du corps humain et est impliqué dans la réponse au stress.

3.2 Bienfaits psychologiques
D’après notre évaluation, le seul bienfait psychologique de l’interaction avec la nature qui est bien établi (Grade A, preuve scientifique établie) est :

  • Réduction de l’anxiété

Une méta-analyse récente (Kotera et coll., 2020) de 20 études sur les effets des bains de forêt sur la santé mentale montre une réduction significative de l’anxiété mesurée avant et après l’intervention. Il y a plusieurs bienfaits psychologiques présumés de l’expérience en forêt, mais avec un niveau de preuve moins élevé que pour la réduction de l’anxiété (Grade B, présomption scientifique) :

  • Sensation réparatrice (« perceived restorativeness »)
  • Diminution de la dépression et d’émotions négatives
  • Amélioration de l’humeur
  • Augmentation de la vitalité, diminution de la fatigue

Certaines études, considérées individuellement, suggèrent un effet favorable de la nature sur la dépression, mais il s’agit d’un effet beaucoup plus modeste que pour l’anxiété. Parmi les quelques études bien menées sur l’association entre le contact avec la nature et la dépression, il y a cette étude australienne (Shanahan et coll., 2016). Le contact des participants avec la nature durant 30 minutes ou plus par semaine était associé à une diminution significative de 7 % de la dépression par comparaison aux participants qui avaient peu de contact avec la nature, c.-à-d. de 0 à 30 minutes par semaine. Cet effet favorable sur la dépression augmente avec la durée de l’exposition, jusqu’à 75 minutes par semaine.

3.3 Bienfaits cognitifs

Il y a relativement peu d’études sur les effets de l’interaction avec la nature sur la cognition, mais quelques-unes d’entre elles, bien faites, suggèrent des effets favorables sur :

  • Amélioration de la fonction cognitive
  • Restauration de l’attention
  • Réduction de la fatigue mentale et de la confusion

Parmi les études bien menées sur les effets de la nature sur la cognition, il y a celles du groupe de recherche dirigé par Marc G. Berman de l’université de Chicago. Une analyse des données provenant de 13 expériences, menées par ces chercheurs auprès de 528 participants, montre que l’exposition à la nature a un effet bénéfique significatif sur la cognition, compa- rativement à l’exposition à un milieu urbain (Stenfors et coll., 2019). Toutes les études incluses dans l’analyse utilisaient un protocole de type essai randomisé et contrôlé (ERC) et le même test cognitif (tâche d’empan de chiffres inversé) pour évaluer les effets sur l’attention et la mémoire de travail. L’amélioration de la performance cognitive était en grande partie indépendante des changements d’affects positifs ou négatifs, ce qui suggère que les mécanismes d’action impliqués devraient faire l’objet d’investigations futures.

La théorie de la restauration de l’attention prédit que l’exposition à la nature pourrait mener à une amélioration de la fonction cognitive. Les méta-analyses les plus récentes montrent que la mémoire de travail, la souplesse cognitive et, à un moindre degré, le contrôle attentionnel sont améliorés après une exposition à un environnement naturel (Stevenson et coll., 2018). Des études d’intervention bien contrôlées devront être réalisées dans l’avenir pour établir scientifiquement que l’interaction avec la nature améliore la fonction cognitive. Avec le vieillissement de la population et la hausse d’incidence de déclin cognitif associée, il serait important d’établir hors de tout doute cet effet bénéfique sur le fonctionnement du cerveau. Après la prescription de l’exercice, prescrira-t-on un jour des visites dans la nature pour atténuer le déclin des fonctions cognitives ?

3.4 Autres bienfaits

L’interaction avec la nature a d’autres bienfaits allégués au niveau social, spirituel et culturel, mais le niveau de preuve scientifique des publications sur ces aspects peut être jugé plutôt faible (Grade C).

  • Amélioration du bien-être spirituel
  • Renforcement de la cohésion sociale et du soutien social
  • Sensibilisation et comportement positif en matière d’environnement et de durabilité

Par exemple, une étude d’observation réalisée aux Pays-Bas auprès de 10 089 résidents de ce pays a voulu savoir si les contacts sociaux ne pouvaient pas être un des facteurs expliquant les bienfaits de la nature sur la santé perçue (Maas et coll., 2009b). Après des ajustements pour prendre en compte les facteurs sociaux économiques et démographiques, les résultats indiquent que les résidents qui vivent dans un environnement où l’on retrouve moins d’espaces verts expérimentent davantage le sentiment de solitude et perçoivent un manque de soutien social. C’est un aspect intéressant, mais des études d’intervention seront requises pour établir si les contacts sociaux sont un facteur causal de l’effet favorable de la nature sur la santé perçue.

3.5 Relation dose-réponse de l’exposition à la nature

À la lumière des résultats rapportés ci-haut, il paraît relativement bien établi que l’exposition à la nature puisse engendrer un certain nombre de bienfaits sur la santé. Toutefois, plusieurs questions méritent d’être approfondies davantage. Par exemple, quelle est la durée d’exposition à la nature optimale pour obtenir des bienfaits pour la santé? Existe-t-il une relation dose- réponse entre la quantité (fréquence et durée) des séjours dans la nature et les bienfaits physiologiques et psychologiques qu’elle procure? Ce sont des questions importantes sur lesquelles relativement peu de chercheurs se sont penchés.

Dans une étude d’observation réalisée auprès de 19 806 participants au Royaume-Uni, les personnes qui ont été en contact avec la nature ≥120 minutes chaque semaine ont été 59 % plus nombreuses à déclarer être en bonne santé et 23 % plus nombreuses à ressentir du bien-être que les participants qui n’ont eu aucun contact avec la nature. Une exposition à la nature de 60 à 90 minutes par semaine n’a pas eu d’effet significatif sur la santé et le bien-être perçus par les participants. L’association favorable plafonne entre 200 et 300 minutes de contact avec la nature par semaine.

Dans une étude d’observation australienne auprès de 1538 résidents de Brisbane âgés de 18 à 70 ans, les participants qui ont fait de longs séjours dans les espaces verts étaient significativement moins nombreux à souffrir de dépression et à avoir une pression artérielle élevée. Des niveaux plus élevés d’activité physique et de perception de la cohésion sociale étaient associés à une fréquence et une durée plus élevées des séjours dans les espaces verts. L’analyse dose-réponse pour la dépression et la pression artérielle élevée suggère que des séjours dans les espaces verts de 30 minutes ou plus durant la semaine pourraient réduire la prévalence de ces maladies dans la population de 7 % et 9 %, respectivement.

Une synthèse exploratoirescoping review ») des études sur la quantité d’expositions à la nature et les bienfaits pour la santé mentale des collégiens (< 20 ans) a recensé 14 études (10 au Japon, 3 aux États-Unis et 1 en Suède). Par comparaison à une exposition d’une durée égale dans un milieu urbain, aussi peu que 10 minutes passées assis ou à marcher dans un milieu naturel ont eu un impact positif significatif sur des marqueurs physiologiques et psychologiques de la santé mentale des jeunes participants.

Ces études sont intéressantes, mais le niveau de preuve scientifique des deux premières études d’observation de type transversal est plutôt faible. Nous sommes d’avis que des études d’intervention avec des protocoles rigoureux et un nombre suffisant de participants devraient être réalisées dans l’avenir pour mieux préciser la relation dose-réponse et ainsi déterminer quelle est la durée optimale des séjours dans la nature pour obtenir tous les bienfaits pour la santé.

4. Conclusion

4.1 Résumé des observations

Cette revue de la littérature scientifique portant sur les effets de l’exposition ou l’interaction avec un milieu naturel sur la santé globale a permis de dégager certaines conclusions. D’abord, les études scientifiques supportent l’idée selon laquelle l’interaction avec la nature favoriserait une réduction de la fréquence cardiaque et de la pression artérielle. Les études rapportent également une diminution de l’activité nerveuse sympathique et une augmentation de l’activité nerveuse parasympathique, qui joue un rôle essentiel pour ralentir les fonctions de l’organisme. Les recherches supportent aussi de façon convaincante l’impact de la nature pour diminuer l’anxiété et pour réduire le taux de cortisol, une hormone connue pour son association avec le stress.

Les recherches permettent de tirer des conclusions plus modestes, qui doivent être considérées avec plus de prudence quant aux impacts de la nature sur certains autres aspects de la santé psychologique, comme une sensation réparatrice (« perceived restorativeness »), une diminution de la dépression et des émotions négatives, une amélioration de l’humeur et une diminution de la fatigue. Une méta-analyse appuie aussi certains bienfaits sur le plan cognitif, notamment sur les performances en mémoire de travail, une composante de la cognition qui permet de manipuler consciemment l’information à court terme. Toutefois, les bienfaits sur la cognition devraient faire l’objet d’études plus poussées pour permettre des conclusions plus soutenues.

Enfin, les études publiées à ce jour appellent à la prudence quant aux liens entre les expositions à la nature et l’amélioration du bien-être spirituel, le renforcement de la cohésion sociale et du soutien social, ainsi qu’à la sensibilisation et aux comportements positifs en matière d’environnement et de durabilité. Les recherches sur ces déterminants de la santé devront être poursuivies pour permettre de tirer des conclusions satisfaisantes au regard des critères scientifiques utilisés dans le présent rapport.

4.2 Une expérience multisensorielle

Bien que les études publiées à ce jour ne permettent pas d’identifier les mécanismes biologiques impliqués dans la relation entre l’exposition à la nature et la santé globale, certaines pistes de recherche peuvent être considérées. De plus, il semble évident que les effets bénéfiques dela nature sur la santé physique et psychologique proviennent vraisemblablement des multiples stimulations sensorielles qui découlent de l’interaction avec les environnements naturels.

Par exemple, on a observé qu’un simple contact visuel avec la nature est associé à plusieurs effets positifs sur la santé, incluant une diminution de l’anxiété, une baisse du rythme cardiaque, une réduction du stress et même une récupération plus rapide après une intervention chirurgicale. Les couleurs naturelles pourraient contribuer à ces effets positifs, puisque le bleu et le vert, qui prédominent dans les environnements naturels, auraient des effets anxiolytiques.

Le calme régnant dans la nature pourrait également jouer un rôle positif, car il est clairement établi que le bruit chronique généré par les environnements urbains contribue au stress, à une diminution de la qualité du sommeil et à une hausse du risque de maladies cardiovasculaires. À l’inverse, notre physiologie est mieux adaptée aux sons émanant de la nature, comme ceux associés au vent ou aux mouvements de l’eau, et il a été suggéré que ces sons peuvent réduire le stress.

Les odeurs de la nature peuvent également induire de puissants effets sur le bien-être. Le système olfactif est étroitement lié au système limbique, la région du cerveau impliquée dans les réponses émotionnelles. Les études montrent que certaines odeurs naturelles plaisantes (l’air d’été ou les parfums des fleurs, par exemple) peuvent effectivement améliorer l’humeur et diminuer l’agressivité.

Mentionnons aussi qu’en plus de stimuler positivement notre odorat, certaines molécules relâchées par la végétation peuvent être inhalées et s’accumuler dans le corps des personnes lors du contact avec la nature, par exemple lors d’une promenade en forêt. C’est notamment le cas des phytoncides, une classe de molécules organiques (monoterpènes) fabriquées par les plantes pour se protéger des parasites et des herbivores. Les études suggèrent que l’exposition à ces molécules lors d’un séjour dans la nature est associée à plusieurs effets positifs, notamment une réduction de l’inflammation et du stress oxydatif, une diminution des taux d’hormones de stress (adrénaline) ainsi qu’une stimulation du système immunitaire. Ces molécules pourraient donc contribuer à la diminution du stress et de l’anxiété associée à l’exposition aux milieux naturels observée dans plusieurs études.

En somme, les études publiées à ce jour permettent d’identifier des effets importants et clairement démontrés de l’exposition ou de l’interaction avec la nature sur la santé, notamment sur plusieurs aspects de la santé physique, ainsi que sur la santé psychologique. Les mécanismes d’action demeurent à ce jour peu connus, et les études futures permettront assurément de mieux documenter les effets complexes de la nature sur le corps afin de mieux comprendre comment l’exposition au milieu naturel engendre des effets bénéfiques sur la santé physique et psychologique. Une meilleure compréhension de ces effets permettrait de développer et d’optimiser des traitements utilisant l’exposition en milieu naturel comme approche thérapeutique ou préventive dans une perspective de santé globale.

Annexe

Tableau 1. Études observationnelles rapportant les principaux bienfaits pour la santé de l’interaction avec la nature. Modifié de Sandifer et coll. (2015), entre autres par l’ajout de références récentes et le retrait de certaines références. Les études portant spécifiquement sur le « bain de forêt » ou l’expérience dans  la nature sont indiquées par un astérisque. Niveau de preuve scientifique : Preuve scientifique établie; • Présomption scientifique; • Faible niveau de preuve scientifique

Bienfaits Description Exemples Références sélectionnées
Physiologiques Effet positif sur la fonction physique et la santé physique Meilleure santé générale Kuo, 2015 (revue littérature); Maas et coll., 2006; Maller et coll., 2009; Mitchell et Popham, 2007Moore et coll., 2006; de Vries et coll., 2003
Amélioration de la perception du bien-être et de la santé. Maas et coll., 2006; Sugiyama et coll., 2008; de Vries et coll., 2003; White et coll., 2019*
Motivation à faire de l’exercice Bird, 2004 (rapport); Depledge et Bird, 2009; Wells et coll., 2007
Réduction du stress et des maladies liées au stress. Amélioration du fonctionnement physiologique. Lottrup et coll., 2013;
Réduction de la maladie, de la toux, de la mortalité, des congés de maladie Mitchell et Popham, 2008
Réduction de la mortalité (toutes causes) Rojas-Rueda et coll., 2019 (méta-analyse); Villeneuve et coll., 2012
Réduction de la mortalité due aux maladies circulatoires et respiratoires Lachowycz et Jones, 2014; Mitchell et Popham, 2008; Villeneuve et coll., 2012
Réduction des maux de tête et de la douleur Hansmann et coll., 2007*; Moore et coll., 2006
Réduction de la mortalité due à la privation de revenu. Maas et coll., 2009a; Maas et coll., 2006Mitchell et Popham, 2008; de Vries et coll., 2003
Réduction de la mortalité due à l’AVC Wilker et coll., 2014
Réduction de la MPOC, des infections des voies respiratoires supérieures, de l’asthme, et d’autres troubles inflammatoires et les maladies intestinales Ege et coll., 2011; Haahtela et coll., 2013 (revue littérature); Hanski et coll., 2012; Lynch et coll., 2014; Maas et coll., 2009a; Rook, 2010; Rook, 2013
Réduction de l’obésité Astell-Burt et coll., 2014a; Pereira et coll., 2013a
Diminution de l’incidence du diabète de type 2 Astell-Burt et coll., 2014b
Réduction de l’exposition à la pollution Pretty et coll., 2011 (revue littérature)
Longévité accrue Takano et coll., 2002

 

Meilleure santé des enfants Maas et coll., 2009a
Meilleure santé générale et convalescence près des régions côtières Fortescue Fox et Lloyd, 1938; Wheeler et coll., 2012
Psychologiques Effets positifs sur les processus et les comportements mentaux Bien-être psychologique Catanzaro et Ekanem, 2004; Curtin, 2009*;Kamitsis et Francis, 2013*; Kaplan, 2001; Maller et coll., 2006* (revue); Moore et coll., 2006Nisbet et coll., 2011; Pretty, 2004*; Sugiyama et coll., 2008
Restauration de l’attention Kaplan et Kaplan, 1989* (livre); White et coll., 2013*
Diminution de la dépression, du découragement, de la colère, de l’agressivité, de la frustration, de l’hostilité, du stress Kuo et Sullivan, 2001a
Augmentation de l’estime de soi Kaplan, 1974; Maller, 2009*; Pretty et coll., 2007*
Réduction de l’anxiété et de la tension nerveuse Maas et coll., 2009a
Augmentation de la vitalité et de la vigueur/diminution de la fatigue. Nisbet et coll., 2011
Augmentation du bonheur MacKerron et Mourato, 2013*
Réduction du TDAH chez les enfants Kuo et Taylor, 2004*; Taylor et coll., 2001
Amélioration de l’estime de soi, de la santé émotionnelle et sociale des enfants. Maller, 2009*; Wells et Evans, 2003
Sociaux Effet positif à l’échelle de la communauté ou à l’échelle nationale Renforce la cohésion sociale et le soutien social Maas et coll., 2009b; Moore et coll., 2006
Esthétique, culturel, récréatif, spirituel Effet positif sur le bien-être culturel et spirituel Amélioration du bien-être spirituel Curtin, 2009*; Kamitsis et Francis, 2013*; Williams et Harvey, 2001*
Satisfaction de l’expérience récréative accrue Bird, 2004 (rapport); MacKerron et Mourato, 2013*; Wyles et coll., 2014*
Résilience accrue Capacité personnelle et communautaire à résister à l’adversité et à rester en bonne santé Sensibilisation et comportement positif en matière d’environnement et de durabilité Nisbet et coll., 2009*; Nisbet et coll., 2011; Mayer et Frantz, 2004; Wyles et coll., 2013; Wyles et coll., 2014*

 

Tableau 2. Études d’interventions supportant les principaux bienfaits pour la santé de l’interaction avec la nature. Modifié de Sandifer et coll. (2015), entre autres par l’ajout de références récentes et le retrait de certaines références. Les études portant spécifiquement sur le « bain de forêt » ou l’expérience dans la nature sont indiquées par un astérisque. Niveau de preuve scientifique : Preuve scientifique établie; Présomption scientifique; Faible niveau de preuve scientifique

Bienfaits Description Exemples Références sélectionnées
Physiologiques Effet positif sur la fonction physique et la santé physique Réduction de la fréquence cardiaque Farrow et Washburn, 2019* (revue); Kobayashi et coll., 2015; Kobayashi et coll., 2018; Kotera et coll., 2020* (revue et méta-analyse); ·Lee et coll., 2014*; Park et coll., 2009*; Park et coll., 2010*; Song et coll., 2014; Tsunetsugu et coll., 2007*; Tsunetsugu et coll., 2013*
Diminution de l’activité nerveuse sympathique et augmentation de l’activité nerveuse parasympathique Farrow et Washburn, 2019* (revue); Kobayashi et coll., 2015; Kobayashi et coll., 2018; Lee et coll., 2014*; Park et coll., 2010*; Song et coll., 2014; Tsunetsugu et coll., 2013*
Réduction de la pression artérielle Furuyashiki et coll., 2019*; Ideno et coll., 2019*(méta-analyse); Lee et coll., 2014*; Park et coll., 2009*; Park et coll., 2010*; Pretty et coll., 2005*; Tsunetsugu et coll., 2007*; Tsunetsugu et coll., 2013*
Réduction du stress et des maladies liées au stress. Amélioration du fonctionnement physiologique. Hansmann et coll., 2007*; Hartig et coll., 2003*; Parsons et coll., 1998; Ulrich et coll., 1991; Van Den Berg et Custers, 2011; Thompson et coll., 2012; Yamaguchi et coll., 2006*
Réduction des niveaux de cortisol (indicateur d’un plus faible niveau de stress) Antonelli et coll., 2019* (méta-analyse); Park et coll., 2007*; Park et coll., 2010*; Song et coll., 2014; Tsunetsugu et coll., 2007*; Van Den Berg et Custers, 2011
Augmentation des niveaux de cellules tueuses naturelles et de protéines anticancéreuses Li et coll., 2007*; Li et coll., 2008a*; Li et coll., 2008b*
Diminution du taux de la glycémie chez des patients diabétiques Ohtsuka et coll., 1998*
Cognitifs Effet positif sur la capacité ou la fonction cognitive Amélioration de la fonction cognitive Berman et coll., 2008*; Berman et coll., 2012*; Bourrier et coll., 2018; Bratman et coll., 2015*; Shin et coll., 2011*; Stenfors et coll., 2019*
Restauration de l’attention Federico, 2020* (revue); Ohly et coll., 2016*(revue systématique); Stevenson et coll., 2018*(revue)
Réduction de la confusion Park et coll., 2011*; Pretty et coll., 2005
Réduction de la fatigue mentale Park et coll., 2011*
Psychologiques Effets positifs sur les processus et les comportements mentaux Bien-être psychologique Kotera et coll., 2020* (revue et méta-analyse)
Sensation réparatrice procurée par le contact avec la nature (« perceived restorativeness ») Hartig et Staats, 2006; Tyrvainen et coll., 2014; White et coll., 2010
Diminution de la dépression, du découragement, de la colère, de l’agressivité, de la frustration, de l’hostilité, du stress Berman et coll., 2012*; Morita et coll., 2007*; Park et coll, 2011*; Shanahan et coll., 2016
  Diminution de la rumination Bratman et coll., 2015*
Augmentation de l’estime de soi Barton et Pretty, 2010; Pretty et coll., 2005
Amélioration de l’humeur Barton et Pretty, 2010; Coon et coll., 2011* (revue); Cracknell, 2013; Furuyashiki et coll., 2019*; Hartig et coll., 1996*; Lee et coll., 2014*; Park et coll, 2011*; Pretty et coll., 2005; Shin et coll., 2011*; Tsunetsugu et coll., 2013*; Tyrvainen et coll., 2014*
Réduction de l’anxiété et de la tension nerveuse Farrow et Washburn, 2019* (revue); Kotera et coll., 2020* (revue et méta-analyse); Lee et coll., 2014*; Park et coll, 2011*; Pretty et coll., 2005; Song et coll., 2014
Augmentation de la vitalité et de la vigueur/diminution de la fatigue. Park et coll, 2011*; Pretty et coll., 2005; Ryan et coll., 2010; Song et coll., 2014; Tyrvainen et coll., 2014*
Créativité accrue Tyrvainen et coll., 2014*
Augmentation du calme, du confort et de la sensation de rafraîchissement. Park et coll., 2009*
Psychologiques Effets positifs sur les processus et les comportements mentaux Amélioration de la qualité de vie chez des hypertendus Sung et coll., 2012*
Effets du froid sur la santé cardiovasculaire

Effets du froid sur la santé cardiovasculaire

EN BREF

  • L’exposition au froid provoque une contraction des vaisseaux sanguins, une augmentation de la pression artérielle, du rythme cardiaque et du travail du muscle cardiaque.
  • La combinaison du froid et de l’exercice augmente davantage le stress sur le système cardiovasculaire.
  • Les températures froides sont associées à une augmentation des symptômes cardiaques (angine, arythmies) et à une incidence accrue d’infarctus du myocarde et de mort subite d’origine cardiaque.
  • Les patients atteints d’une maladie coronarienne devraient limiter leur exposition au froid et s’habiller chaudement et se couvrir le visage lorsqu’ils font de l’exercice.

Le froid parfois mordant de nos hivers peut-il nuire à notre santé globale et à notre santé cardiovasculaire en particulier ? Nous avions déjà abordé un aspect de cette question concernant le risque d’infarctus causé par l’effort considérable qui est nécessaire pour pelleter la neige en hiver (voir : Tempêtes de neige et le risque d’infarctus du myocarde), et dans un résumé des résultats d’une étude suédoise sur l’association entre le froid et l’incidence de crise cardiaque. Pour une revue exhaustive de la littérature sur les effets du froid sur la santé en général, voir le rapport de synthèse récemment publié par l’Institut national de santé publique du Québec (INSPQ). Dans le présent article, nous porterons notre attention sur les principaux effets du froid sur le système cardiovasculaire et plus particulièrement sur la santé des personnes atteintes d’une maladie cardiovasculaire.

L’exposition brève et prolongée au froid affectent toutes deux le système cardiovasculaire, et l’exercice par temps froid augmente encore davantage le stress sur le cœur et les artères. De nombreuses études épidémiologiques ont montré que les maladies et la mortalité cardiovasculaires augmentent lorsque la température ambiante est froide et durant les vagues de froid. La saison hivernale est associée à un plus grand nombre de symptômes cardiaques (angine, arythmies) et d’évènements cardiovasculaires tels la crise hypertensive, la thrombose veineuse profonde, l’embolie pulmonaire, des ruptures et dissections aortiques, l’accident vasculaire cérébral, l’hémorragie intracérébrale, l’insuffisance cardiaque, la fibrillation auriculaire, les arythmies ventriculaires, l’angine de poitrine, l’infarctus aigu du myocarde et la mort subite d’origine cardiaque.

Mortalité attribuable au froid
À l’échelle mondiale, davantage de décès attribuables à la température ont été causés par le froid (7,29 %) que par la chaleur (0,42 %). Pour le Canada, c’est 4,46 % des décès qui étaient attribuables au froid (2,54 % pour Montréal), et 0,54 % à la chaleur (0,68 % pour Montréal).

L’intuition pourrait nous porter à croire que c’est durant les épisodes de froid extrême que surviennent un plus grand nombre d’effets indésirables sur la santé, mais la réalité est toute autre. Selon une étude qui a analysé 74 225 200 décès survenus entre 1985 et 2012 dans 13 grands pays situés sur 5 continents, les températures extrêmes (froides ou chaudes) étaient responsables de seulement 0,86 % de tous les décès, alors que la majorité des décès reliés au froid sont survenus à des températures modérément froides (6,66 %).

Effets aigus du froid sur le système cardiovasculaire des personnes en santé
Pression artérielle – La baisse de la température de la peau lors de l’exposition au froid est détectée par les thermorécepteurs cutanés qui stimulent le système nerveux sympathique et provoque un réflexe de vasoconstriction (diminution du diamètre des vaisseaux sanguins). Cette vasoconstriction périphérique prévient la perte de chaleur à la surface du corps et a pour effet d’augmenter la pression artérielle systolique (5-30 mmHg) et diastolique (5-15 mmHg).

Rythme cardiaque – Il n’est pas très affecté par l’exposition du corps à l’air froid, mais il augmente rapidement lorsque par exemple on plonge la main dans de l’eau glacée (« test au froid » utilisé pour faire certains diagnostics, tel celui de la maladie de Raynaud) ou qu’on inhale de l’air très froid. L’air froid provoque généralement une légère augmentation du rythme cardiaque de l’ordre de 5 à 10 battements par minute.

Risque de rupture de plaque d’athérome ?
Des études post-mortem ont montré que la rupture des plaques d’athéromes (dépôts de lipides sur la paroi des artères) est la cause immédiate de plus de 75 % des infarctus du myocarde aigus. Le stress causé par le froid pourrait-il favoriser la rupture des plaques d’athéromes ? Dans une étude en laboratoire, des souris exposées au froid dans une chambre froide (4°C) durant 8 semaines ont vu leur taux de cholestérol-LDL sanguin et le nombre de plaques augmenter par comparaison aux souris du groupe témoin (chambre à 30°C). D’autre part, on sait que l’exposition au froid induit l’agrégation des plaquettes in vitro et qu’elle fait augmenter les facteurs de coagulation in vivo chez des patients durant les jours plus froids (<20°C) par comparaison aux jours plus chauds (>20°C). Combinés, ces effets du froid pourraient contribuer à favoriser la rupture de plaque, mais aucune étude n’a pu démontrer cela jusqu’à présent.

Risque d’arythmies cardiaques
Les arythmies sont une cause fréquente de mort subite cardiaque. Même chez des volontaires en bonne santé, le simple fait de plonger la main dans de l’eau froide en retenant la respiration peut provoquer des arythmies cardiaques (tachycardies nodales et supraventriculaires). Le froid pourrait-il favoriser la mort subite chez des personnes à risque ou atteintes d’une maladie cardiaque ? Les arythmies ne pouvant être détectées post-mortem, il est très difficile de prouver une telle hypothèse. S’il s’avérait que l’exposition à l’air froid peut favoriser les arythmies, les personnes atteintes de maladie coronarienne pourraient être vulnérables au froid puisque l’arythmie viendrait amplifier le déficit en sang oxygéné qui parvient au muscle cardiaque.

Effets du froid combiné à l’exercice
Le froid et l’exercice augmentent tous deux individuellement la demande en oxygène par le cœur, et la combinaison des deux stress a un effet additif sur cette demande (voir ces deux articles de synthèse en anglais, ici et ici). L’exercice dans le froid résulte donc en une augmentation de la pression artérielle systolique et diastolique ainsi que du « double produit » (fréquence cardiaque x pression artérielle), un marqueur du travail cardiaque.

La demande accrue en oxygène par le muscle cardiaque provoquée par le froid et l’exercice fait augmenter le débit sanguin dans les artères coronaires qui irriguent le cœur. La vitesse du flux sanguin coronarien augmente en réponse au froid et à l’exercice combinés en comparaison avec l’exercice seulement, mais cette hausse est atténuée, particulièrement chez les personnes plus âgées. Il semble donc que le froid cause un décalage relatif entre la demande en oxygène provenant du myocarde et l’alimentation en sang oxygéné durant l’exercice.

Lors d’une étude effectuée par notre équipe de recherche, nous avons exposé 24 patients coronariens souffrant d’angine stable à 6 conditions expérimentales en chambre froide à -8°C : une épreuve d’effort avec électrocardiogramme (EE) au froid sans médicament anti-angineux et une EE à +20°C. Nous avons par la suite répété ces deux EE après la prise d’un médicament (propranolol) qui ralentit la fréquence cardiaque, puis avec un autre médicament (diltiazem) qui cause une dilatation des artères coronaires. Les résultats ont démontré que chez seulement 1/3 des patients, le froid causait une ischémie légère à modérée (manque d’apport sanguin) au myocarde. Lorsque l’EE était effectuée avec la prise d’un médicament, cet effet était complètement renversé. Les deux médicaments se sont montrés également efficaces pour renverser cette ischémie. La conclusion : le froid n’a eu qu’un effet modeste chez 1/3 des patients et les médicaments anti-angineux sont aussi efficaces au froid (-8°C) qu’à +20°C.

Dans une autre étude chez le même type de patients, nous avons comparé les effets d’une EE à -20°C avec une EE à +20°C. Les résultats ont montré qu’à cette température très froide, tous les patients présentaient une angine et une ischémie plus précoce.

Hypertension
La prévalence de l’hypertension est plus élevée dans les régions froides ou durant l’hiver. Les hivers froids font augmenter la gravité de l’hypertension et font accroître le risque d’évènements cardiovasculaires tels l’infarctus du myocarde et l’AVC chez les hypertendus.

Insuffisance cardiaque
Le cœur des patients atteints d’insuffisance cardiaque n’est pas capable de pomper suffisamment de sang pour maintenir le débit sanguin nécessaire pour satisfaire les besoins du corps. Quelques études seulement ont examiné les effets du froid sur l’insuffisance cardiaque. Les patients atteints d’insuffisance cardiaque n’ont pas beaucoup de marge de manœuvre lorsque la charge de travail du cœur augmente lorsqu’il fait froid ou lorsqu’ils doivent faire un effort physique soutenu. Le froid combiné à l’exercice diminue davantage les performances des insuffisants cardiaques. Par exemple, dans une étude que nous avons réalisée à l’Institut de cardiologie de Montréal, le froid a réduit de 21 % le temps d’exercice chez des personnes atteintes d’insuffisance cardiaque. Dans la même étude, l’utilisation de médicaments antihypertenseurs de la classe des bêtabloquants (métoprolol ou carvedilol) a permis d’augmenter significativement le temps d’exercice et d’atténuer l’impact de l’exposition au froid sur la capacité fonctionnelle des patients. Une autre de nos études indique qu’un traitement avec un médicament antihypertenseur de la classe des inhibiteurs de l’enzyme de conversion de l’angiotensine, le lisinopril, atténue aussi l’impact du froid sur la capacité à faire de l’exercice chez des personnes atteintes d’insuffisance cardiaque.

Froid, exercice et maladie coronarienne
Il est plutôt improbable que le froid seul puisse causer une augmentation du travail du muscle cardiaque suffisamment importante pour provoquer un infarctus du myocarde. Le stress causé par le froid fait augmenter le travail du muscle cardiaque et par conséquent l’apport de sang au cœur chez les personnes en santé, mais chez les coronariens on observe généralement une réduction du débit sanguin dans les artères coronaires. La combinaison du froid et de l’exercice met les coronariens à risque d’ischémie cardiaque (manque d’oxygène au cœur) beaucoup plus tôt dans leur séance d’entraînement que par temps chaud ou tempéré. Pour cette raison, les personnes atteintes d’une maladie coronarienne doivent limiter l’exposition au froid et porter des vêtements qui les gardent au chaud et se couvrir le visage (perte de chaleur importante dans cette partie du corps) lorsqu’ils font de l’exercice à l’extérieur par temps froid. Par ailleurs, la tolérance à l’exercice des coronariens sera réduite par temps froid. Il est fortement recommandé aux patients coronariens de faire des exercices d’échauffement à l’intérieur avant de sortir faire de l’exercice à l’extérieur par temps froid.

Les plantes d’intérieur ont-elles des effets bénéfiques sur la santé ?

Les plantes d’intérieur ont-elles des effets bénéfiques sur la santé ?

EN BREF

Avoir des plantes d’intérieur et les entretenir peut :

  • Réduire le stress psychologique et physiologique.
  • Améliorer la convalescence après une opération chirurgicale.
  • Augmenter l’attention et la concentration.
  • Augmenter la créativité et la productivité.

Dans nos sociétés modernes où tout semble aller de plus en plus vite, plusieurs ressentent les effets néfastes du stress et de l’anxiété ; or cela semble s’être accentué depuis le début de la pandémie de COVID-19. Pendant le printemps et l’été 2020, de nombreux Québécois ont profité de la belle saison pour se ressourcer dans la nature, soit en visitant un parc, en faisant du camping, de la marche en forêt ou en louant un chalet à la campagne. À l’approche de l’hiver, les contacts avec la verdure se raréfient et les voyages dans des contrées aux climats plus chauds sont risqués et fortement déconseillés par la Santé publique. À part les randonnées dans nos belles forêts de conifères, un des seuls contacts possibles avec la verdure durant ce long hiver sera nos plantes vertes dont nous prenons soin dans nos logements. Les plantes d’intérieur décorent et amènent une touche naturelle dans nos foyers, mais ont-elles des effets bénéfiques avérés sur notre santé physique et mentale ?

Réduction du stress
Une revue systématique réalisée en 2019 a répertorié quelques 50 études sur les bienfaits psychologiques des plantes d’intérieur, la plupart de ces études étant de qualité moyenne. Les effets positifs les plus notables des plantes d’intérieur sur les participants sont une augmentation des émotions positives et une diminution des émotions négatives, suivi d’une réduction de l’inconfort physique.

Dans une étude randomisée contrôlée à plan croisé auprès de jeunes adultes, les participants ont vu leur humeur s’améliorer davantage après avoir transplanté une plante d’intérieur qu’après avoir exécuté une tâche à l’ordinateur. De plus, la pression artérielle diastolique et l’activité du système nerveux sympathique (réponse physiologique au stress) des participants étaient significativement moins élevées après avoir transplanté une plante qu’après avoir exécuté une tâche à l’ordinateur. Ces résultats indiquent que l’interaction avec des plantes d’intérieur peut réduire le stress psychologique et physiologique par comparaison à un travail mental.

Les plantes au bureau
Une équipe japonaise a réalisé en 2020 une étude sur les effets des plantes en milieu de travail sur le niveau de stress psychologique et physiologique des travailleurs. Dans la première phase de l’étude (1 semaine), les travailleurs travaillaient à leur bureau en absence de plante, alors que durant la phase d’intervention (4 semaines) les participants pouvaient voir et entretenir une plante d’intérieur qu’ils ont pu choisir parmi 6 différents types (bonsaï, tillandsia, echeveria, cactus, plante à feuillage, kokedama). Les participants ont reçu l’instruction de prendre une pause de trois minutes lorsqu’ils ressentaient de la fatigue et de prendre leur pouls avant et après la pause. Durant ces pauses de 3 minutes, les travailleurs devaient regarder leur bureau (avec ou sans plante d’intérieur). Les chercheurs ont mesuré le stress psychologique avec le questionnaire sur l’anxiété chronique et réactionnelle (STAI ; State-Trait Anxiety Inventory). L’implication des participants était donc à la fois passive (regarder la plante) et active (arroser et entretenir la plante).

Le stress psychologique évalué par le STAI était significativement, quoique modérément, moins élevé durant l’intervention en présence d’une plante d’intérieur que durant la période sans plante. La fréquence cardiaque de la majorité des patients (89 %) n’était pas significativement différente avant et après l’intervention, alors qu’elle a diminué chez 4,8 % des participants et augmenté chez 6,3 % des patients. On doit conclure que l’intervention n’a pas eu d’effet sur le rythme cardiaque qui est un indicateur du stress physiologique, même si elle a réduit légèrement le stress psychologique.

Une étude réalisée auprès de 444 employés de l’Inde et des États-Unis indique que les environnements de bureau incluant des éléments naturels telles les plantes d’intérieur et l’exposition à la lumière naturelle influencent positivement la satisfaction et l’implication au travail. Ces éléments naturels semblent agir comme des « tampons » contre les effets du stress et de l’anxiété générés par le travail.

Convalescence après une opération chirurgicale
Il semble que les plantes favorisent la convalescence de patients après une opération chirurgicale selon une étude réalisée dans un hôpital en Corée. Quatre-vingts femmes en convalescence après une thyroïdectomie ont été assignées au hasard à une salle sans plantes ou à une salle avec des plantes d’intérieur (à feuillage et à fleurs). Les données recueillies pour chaque patiente incluaient la durée de l’hospitalisation, l’utilisation d’analgésiques pour contrôler la douleur, les signes vitaux, l’intensité de la douleur perçue, l’anxiété et la fatigue, l’index STAI (stress psychologique) et d’autres questionnaires. Les patientes qui ont été hospitalisées dans des chambres avec des plantes d’intérieur et des fleurs ont eu une durée d’hospitalisation plus courte, pris moins d’analgésiques, ressenti moins de douleur, d’anxiété et de fatigue, et elles ont eu davantage d’émotions positives et une plus grande satisfaction à propos de leur chambre que les patientes qui ont récupéré de leur opération dans une chambre sans plantes. Les mêmes chercheurs ont réalisé une étude similaire auprès de patients qui récupéraient après une appendicectomie. Ici encore les patients qui avaient des plantes et des fleurs dans leur chambre ont mieux récupéré de leur opération chirurgicale que ceux qui n’avaient pas de plantes dans leur chambre.

Amélioration de l’attention et de la concentration
23 élèves à l’école élémentaire (âgés de 11 à 13 ans) ont participé à une étude où ils ont été mis dans une pièce où se trouvait soit une plante artificielle, une vraie plante, une photographie d’une plante ou pas de plante du tout. Les participants portaient un appareil d’électroencéphalographie sans fil durant les 3 minutes d’exposition aux différents stimuli. Les enfants qui ont été mis en présence d’une vraie plante étaient plus attentifs, plus à même de se concentrer que ceux des autres groupes. De plus, la présence d’une vraie plante était associée à une meilleure humeur en général.

Productivité
Une étude transversale auprès de 385 travailleurs de bureau en Norvège a trouvé une association significative, quoique très modeste, entre le nombre de plantes présentes dans leur bureau et le nombre de jours de congé de maladie et la productivité. En effet, les travailleurs qui avaient davantage de plantes dans leur bureau ont pris un peu moins de journées de congé de maladie et ont été un peu plus productifs au travail. Dans une autre étude, des étudiants américains devaient accomplir des tâches à l’ordinateur, en présence ou en absence de plantes d’intérieur dans des pièces sans fenêtre. En présence de plantes, les participants ont été plus productifs (12 % plus rapide dans l’exécution des tâches) et moins stressé puisque leur pression artérielle était moins élevée qu’en absence de plantes d’intérieur.

Et la qualité de l’air ?
Les plantes purifient-elles l’air de nos logements ? C’est une question intéressante puisque nous passons beaucoup de temps dans des habitations de plus en plus étanches, et que les matériaux et notre activité (ex. : cuisine) dégagent des polluants tels les composés organiques volatils (COV), des composés oxydants (ex. : ozone) et des particules fines. Une étude de la NASA a montré que les plantes et les microorganismes associés contenus dans le sol pouvaient réduire le niveau de polluants dans une petite chambre expérimentale étanche. Ces résultats favorables obtenus en laboratoire sont-ils observables dans nos habitations, écoles et bureaux ? Certaines études (celle-ci par exemple) concluent que les plantes font diminuer les concentrations de CO2, de COV et de particules fines (PM10). Ces résultats ont cependant été remis en question par des chercheurs (voir cette étude), qui mettent en doute la méthodologie utilisée dans les études sur le sujet et qui sont d’avis que les plantes sont inefficaces pour améliorer la qualité de l’air de nos bâtiments. Selon ces chercheurs, il vaudrait mieux focaliser les efforts de la recherche sur d’autres technologies d’assainissement de l’air, ainsi que sur les effets bénéfiques des plantes sur la santé humaine.

Conclusion :
Les plantes d’intérieur peuvent procurer des bienfaits pour la santé en diminuant le stress psychologique et physiologique. Posséder et entretenir des plantes peut améliorer l’humeur et augmenter l’attention et la concentration. De nouvelles études, plus puissantes et mieux contrôlées seront nécessaires pour mieux cerner et comprendre les effets des plantes sur la santé humaine.