Les lignanes : des composés d’origine végétale favorables à une bonne santé cardiovasculaire

Les lignanes : des composés d’origine végétale favorables à une bonne santé cardiovasculaire

EN BREF

  • Les lignanes alimentaires sont des composés phénoliques qui proviennent principalement des aliments à base de plantes, en particulier des graines, grains entiers, fruits, légumes, vin, thé et café.
  • La consommation de lignanes est associée à une réduction du risque de développer une maladie cardiovasculaire selon plusieurs études bien menées.

On retrouve plus de 8 000 composés phénoliques et polyphénoliques dans les plantes. Ces composés ne sont pas des nutriments, mais ils ont diverses activités biologiques bénéfiques dans le corps humain. Ils sont généralement groupés en 4 classes : les acides phénoliques, les flavonoïdes, les stilbènes (ex. : le resvératrol) et les lignanes. Les lignanes sont des dimères de monolignols, lesquels peuvent aussi servir à la synthèse d’un long polymère ramifié, la lignine, présente dans les parois des vaisseaux conducteurs des plantes. Du point de vue de la nutrition, les lignines sont considérées comme des composants des fibres alimentaires insolubles.


Figure 1. Structures des principaux lignanes alimentaires

Les lignanes alimentaires, dont les plus importants sont le matairésinol, le sécoisolaricirésinol, le pinorésinol et le laricirésinol, proviennent principalement des aliments à base de plantes, en particulier des graines, grains entiers, fruits, légumes, vin, thé et café (voir le tableau 1). D’autres lignanes sont présents dans certains types d’aliments seulement, tels le médiorésinol (graines de sésame, seigle, citron), le syringarésinol (grains), sésamine (graines de sésame). Les lignanes sont transformés en entérolignanes par le microbiote intestinal, qui sont ensuite absorbés dans la circulation sanguine et distribués dans tout le corps.

Tableau 1. Contenu en lignanes d’aliments de consommation courante.
Adapté de Peterson et coll., 2010 et Rodriguez-Garcia et coll., 2019.

Plusieurs études indiquent que les lignanes peuvent prévenir et améliorer la santé cardiovasculaire et d’autres maladies chroniques, y compris le cancer, par ses propriétés anti-inflammatoire et œstrogénique (capacité à se lier aux récepteurs des œstrogènes).

Une étude américaine publiée récemment indique qu’il y a une association significative entre l’apport alimentaire en lignanes et l’incidence de maladie coronarienne. Parmi les 214,108 personnes provenant de 3 cohortes de professionnels de la santé, celles qui ont consommé le plus de lignanes (totaux) avaient un risque 15 % moins élevé de développer une maladie coronarienne que celles qui en avaient consommé peu. En considérant chaque lignane séparément, l’association était particulièrement favorable pour le matairésinol (-24 %), comparativement au sécoisolaricirésinol (-13 %), au pinorésinol (-11 %) et au laricirésinol (-11 %). Il y a une relation dose-effet non linéaire pour les lignanes totaux, le matairésinol et le sécoisolaricirésinol avec un plateau (effet maximal) à approximativement 300 µg/jour, 10 µg/jour, et 100 µg/jour, respectivement. En moyenne, les Canadiens consomment en moyenne 857 µg de lignanes par jour, un apport suffisant pour bénéficier des effets favorables sur la santé cardiovasculaire, mais les habitants de certains pays occidentaux tels le Royaume-Uni, les États-Unis et l’Allemagne n’ont pas un apport optimal en lignanes (Tableau 2).

L’association favorable pour les lignanes était particulièrement apparente parmi les participants qui avaient un apport alimentaire élevé en fibres. Les auteurs de l’étude suggèrent que les fibres, en favorisant un microbiote en santé, pourraient favoriser la production d’entérolignanes dans l’intestin.

Tableau 2. Apport quotidien en lignanes dans des pays occidentaux.
Adapté de Peterson et coll., 2010.

Une étude reconnue, PREDIMED (Prevención con Dieta Mediterránea) réalisée en auprès de plus de 7 000 Espagnols (55-80 ans) à risque élevé de développer une maladie cardiovasculaire, a comparé le régime alimentaire méditerranéen (supplémenté en noix et en huile d’olive extravierge) à un régime alimentaire faible en gras prôné par l’American Heart Association pour la prévention des maladies cardiovasculaires (MCV). Dans cette étude le régime méditerranéen s’est avéré clairement supérieur au régime faible en gras pour prévenir les MCV, si bien que l’étude a été interrompue après 4,8 années pour des raisons éthiques. Une analyse plus fine des données de PREDIMED a montré qu’il y a une association très favorable entre un apport alimentaire élevé en polyphénols et le risque de MCV. Les participants qui ont consommé le plus de polyphénols totaux avaient un risque 46 % moins élevé de MCV que ceux qui en consommaient le moins. Les polyphénols qui étaient les plus fortement associés à une réduction du risque de MCV étaient les flavanols (-60 %), les acides hydroxybenzoïques (-53 %) et les lignanes (-49 %). Il est à noter que les noix et l’huile d’olive extravierge qui étaient consommées quotidiennement par les participants à l’étude PREDIMED contiennent des quantités appréciables de lignanes.

Une autre analyse des données de l’étude PREDIMED a montré une association favorable entre l’apport en polyphénols totaux et le risque de mortalité de toute cause. Une consommation élevée en polyphénols totaux, comparée à une consommation peu élevée, était associée à une réduction du risque de mortalité prématurée de 37 %. Les stilbènes et les lignanes étaient les polyphénols les plus favorables à une réduction du risque de mortalité, soit de 52 % et 40 %, respectivement. Dans ce cas-ci, les flavonoïdes et acides phénoliques n’étaient pas associés à une réduction significative du risque de mortalité.

Aucune étude randomisée contrôlée sur les composés phénoliques et le risque de CVD n’a été réalisée à ce jour. Il n’a donc pas de preuve directe que les lignanes protègent le système cardiovasculaire, mais l’ensemble des données des études populationnelles suggère qu’il est bénéfique pour la santé d’augmenter l’apport alimentaire en lignanes et donc de manger davantage de fruits, légumes, grains entiers, légumineuses, noix et de l’huile d’olive extravierge qui sont d’excellentes sources des ces composés d’origine végétale encore trop peu connus.

Bien choisir ses sources de glucides est primordial pour la prévention les maladies cardiovasculaires

Bien choisir ses sources de glucides est primordial pour la prévention les maladies cardiovasculaires

EN BREF

  • Des études récentes montrent que les personnes qui consomment régulièrement des aliments contenant des glucides de mauvaise qualité (sucres simples, farines raffinées) ont un risque accru d’accidents cardiovasculaires et de mortalité prématurée.
  • À l’inverse, un apport alimentaire élevé en glucides complexes, comme les amidons résistants et les fibres alimentaires, est associé à une baisse du risque de maladies cardiovasculaires et à une amélioration de la santé en général.
  • Privilégier la consommation régulière d’aliments riches en glucides complexes (grains entiers, légumineuses, noix, fruits et légumes), tout en réduisant celle d’aliments contenant des glucides simples (aliments transformés, boissons sucrées, etc.), représente donc une façon simple d’améliorer sa santé cardiovasculaire.

Il est maintenant bien établi qu’une alimentation de bonne qualité est indispensable à la prévention des maladies cardiovasculaires et au maintien d’une bonne santé en général. Ce lien est particulièrement bien documenté en ce qui concerne les matières grasses de l’alimentation : plusieurs études épidémiologiques ont en effet rapporté qu’un apport alimentaire trop élevé en gras saturés augmente les taux de cholestérol-LDL, un important contributeur au développement de l’athérosclérose, et est associé à une hausse du risque de maladies cardiovasculaires. En conséquence, la plupart des experts s’entendent pour dire qu’il faut limiter l’apport en aliments contenant des quantités importantes de gras saturés, les viandes rouges par exemple, et plutôt privilégier les sources de matières grasses insaturées, comme les huiles végétales (en particulier l’huile d’olive extra-vierge et celles riches en oméga-3 comme celle de canola), de même que les noix, certaines graines (lin, chia, chanvre) et les poissons (voir notre article à ce sujet). Cela correspond en gros au régime méditerranéen, un mode d’alimentation qui a été à maintes reprises associé à une diminution du risque de plusieurs maladies chroniques, en particulier les maladies cardiovasculaires.

Du côté des glucides, le consensus qui a émergé au cours des dernières années est qu’il faut privilégier les sources de glucides complexes comme les céréales à grains entiers, les légumineuses et les végétaux en général, tout en réduisant l’apport en glucides simples provenant des farines raffinées et des sucres ajoutés. Suivre cette recommandation peut cependant être beaucoup plus ardu qu’on peut le penser, car de nombreux produits alimentaires qui nous sont proposés contiennent ces glucides de mauvaise qualité, en particulier toute la gamme de produits ultratransformés qui comptent pour près de la moitié des calories consommées par la population. Il est donc très important d’apprendre à distinguer les bons des mauvais glucides, d’autant plus que ces nutriments constituent la principale source de calories consommées quotidiennement par la majorité des gens. Pour y arriver, nous croyons utile de rappeler d’où proviennent les glucides et à quel point la transformation industrielle des aliments peut affecter leurs propriétés et leurs impacts sur la santé.

Polymères de sucre

Tous les glucides de notre alimentation proviennent, d’une façon ou d’une autre, des végétaux. Au cours de la réaction de photosynthèse, en plus de former de l’oxygène (O2) à partir du gaz carbonique de l’air (CO2), les plantes transforment aussi en parallèle l’énergie contenue dans le rayonnement solaire en énergie chimique, sous forme de sucre :

6 CO2 + 12 H2O + lumière  C6H12O6  (glucose) + 6 O2 + 6 H2O

Dans la très grande majorité des cas, ce sucre fabriqué par les végétaux ne reste pas sous cette forme de sucres simples, mais sert plutôt à la fabrication de polymères complexes, c’est-à-dire des chaines contenant plusieurs centaines (et dans certains cas des milliers) de molécules de sucre liées chimiquement les unes aux autres. Une conséquence importante de cet arrangement est que le sucre contenu dans ces glucides complexes n’est pas immédiatement accessible et doit être extrait par digestion avant d’atteindre la circulation sanguine et servir de source d’énergie aux cellules de l’organisme. Ce prérequis permet d’éviter une entrée trop rapide du sucre dans le sang qui déséquilibrerait les systèmes de contrôle chargés de maintenir la concentration de cette molécule à des niveaux tout juste suffisants pour subvenir aux besoins de l’organisme. Et ces niveaux sont beaucoup plus faibles qu’on peut le penser : en moyenne, le sang d’une personne en bonne santé contient un maximum de 4 à 5 g de sucre au total, soit à peine l’équivalent d’une cuillerée à thé.  Un apport alimentaire en glucides complexes permet donc d’apporter suffisamment d’énergie pour soutenir notre métabolisme, tout en évitant des fluctuations trop importantes de la glycémie qui pourraient entrainer les problèmes de santé.

La figure 1 illustre la répartition des deux principaux types de polymères de sucre dans la cellule végétale, soit les amidons et les fibres.

Figure 1. Caractéristiques physicochimiques et impacts physiologiques des amidons et fibres alimentaires provenant des cellules végétales.  Adapté de Gill et coll. (2021).

Les amidons. Les amidons sont des polymères de glucose que la plante entrepose comme réserve d’énergie dans des granules (amyloplastes) localisées à l’intérieur des cellules végétales. Cette source de glucides alimentaires fait partie de l’alimentation humaine depuis la nuit des temps, comme en témoigne la découverte récente de gènes de bactéries spécialisées dans la digestion des amidons dans la plaque dentaire d’individus du genre Homo ayant vécu il y a plus de 100,000 ans. Encore aujourd’hui, un très grand nombre de végétaux couramment consommés sont riches en amidon, en particulier les tubercules (pomme de terre, etc.), les céréales (blé, riz, orge, maïs, etc.), les pseudocéréales (quinoa, chia, etc.), les légumineuses et les fruits.

La digestion des amidons présents dans ces végétaux permet de relâcher des unités de glucose dans la circulation sanguine et ainsi apporter l’énergie nécessaire pour soutenir le métabolisme cellulaire. Par contre, plusieurs facteurs peuvent influencer le degré et la vitesse de digestion de ces amidons (et la hausse de la glycémie qui en résulte).  C’est notamment le cas des « amidons résistants » qui ne sont pas du tout (ou très peu) digérés au cours du transit gastrointestinal et qui demeurent donc intacts jusqu’à ce qu’ils atteignent le côlon. Selon les facteurs responsables de leur résistance à la digestion, on peut identifier trois principaux types de ces amidons résistants (AR) :

  • AR-1 : Ces amidons sont physiquement inaccessibles à la digestion, car ils sont trappés à l’intérieur des cellules végétales non brisées, par exemple les grains entiers.
  • AR-2 : La sensibilité des amidons à la digestion peut aussi varier considérablement selon la source et le degré d’organisation des chaines de glucose à l’intérieur des granules. Par exemple, la forme d’amidon la plus répandue dans le règne végétal est l’amylopectine (70-80 % de l’amidon total), un polymère formé de plusieurs embranchements de chaines de glucose.  Cette structure ramifiée augmente la surface de contact avec les enzymes spécialisées dans la digestion des amidons (amylases) et permet une meilleure extraction des unités de glucose présentes dans le polymère. L’autre constituant de l’amidon, l’amylose, possède quant à lui une structure beaucoup plus linéaire qui réduit l’efficacité des enzymes à extraire le glucose présent dans le polymère.  En conséquence, les  aliments contenant une plus grande proportion d’amylose sont plus résistants à la dégradation, relâchent moins de glucose et causent donc une plus faible hausse de la glycémie.  C’est le cas par exemple des légumineuses, qui contiennent jusqu’à 50 % de leur amidon sous forme d’amylose, soit beaucoup plus que d’autres sources d’amidons couramment consommées, comme les tubercules et les céréales.
  • AR-3 : Ces amidons résistants sont formés lorsque les granules d’amidon sont chauffées et par la suite refroidies. La cristallisation de l’amidon qui s’ensuit, un phénomène appelé rétrogradation, crée une structure rigide qui protège l’amidon des enzymes digestives. Les salades de pâtes, de pomme de terre ou encore le riz à sushi sont tous des exemples d’aliments contenant des amidons résistants de ce type.

Une conséquence immédiate de cette résistance des amidons résistants à la digestion est que ces polymères de glucose peuvent être considérés comme des fibres alimentaires au point de vue fonctionnel. Ceci est important, car, comme discuté ci-bas, la fermentation des fibres par les centaines de milliards de bactéries (microbiote) présentes au niveau du côlon génère plusieurs métabolites qui jouent des rôles extrêmement importants dans le maintien d’une bonne santé.

Fibres alimentaires. Les fibres sont des polymères de glucose présent en grandes quantités dans la paroi des cellules végétales où elles jouent un rôle important dans le maintien de la structure et de la rigidité des végétaux. La structure de ces fibres les rend totalement résistantes à la digestion et le sucre qu’elles contiennent ne contribue aucunement à l’apport en énergie. Traditionnellement, on distingue deux principaux types de fibres alimentaires, soit les fibres solubles et insolubles, chacune dotée de propriétés physicochimiques et d’effets physiologiques qui leur sont propres. Tout le monde a entendu parler des fibres insolubles (dans le son de blé, par exemple) qui augmentent le volume des selles et accélèrent le transit gastro-intestinal (la fameuse « régularité »).  Ce rôle mécanique des fibres insolubles est important, mais d’un point de vue physiologique, ce sont surtout les fibres solubles qui méritent une attention particulière en raison des multiples effets positifs qu’elles exercent sur la santé.

En captant l’eau, ces fibres solubles augmentent la viscosité du contenu digestif, ce qui contribue à réduire l’absorption du sucre et des graisses alimentaires et ainsi à éviter des hausses trop importantes de la glycémie et des taux sanguins de lipides pouvant contribuer à l’athérosclérose (cholestérol-LDL, triglycérides).  La présence de fibres solubles ralentit également la vidange gastrique et peut donc diminuer l’apport calorique en augmentant le sentiment de satiété.  Enfin, la communauté bactérienne qui réside au niveau du côlon (le microbiote) raffole des fibres solubles (et des amidons résistants) et cette fermentation bactérienne génère plusieurs substances bioactives, notamment les acides gras à courtes chaines (SCFA) acétate, propionate et butyrate. Plusieurs études réalisées au cours des dernières années ont montré que ces molécules exercent une myriade d’effets positifs sur l’organisme, que ce soit en diminuant l’inflammation chronique, en améliorant la résistance à l’insuline, en diminuant la pression artérielle et le risque de maladies cardiovasculaires ou encore en favorisant l’établissement d’un microbiote diversifié, optimal pour la santé du côlon (Tableau 1)

Une compilation  de plusieurs études réalisées au cours des dernières années (185 études observationnelles et 58 essais randomisés, ce qui équivaut à 135 millions de personnes-années), indique  qu’une consommation de 25 à 30 g de fibres par jour semble optimale pour profiter de ces effets protecteurs, soit environ le double de la consommation moyenne actuelle.

Effets physiologiquesImpacts bénéfiques sur la santé
MétabolismeAmélioration de la sensibilité à l'insuline
Réduction du risque de diabète de type 2
Amélioration de la glycémie et du profil lipidique
Contrôle du poids corporel
Microbiote intestinalFavorise un microbiote diversifié
Production d'acides gras à courtes chaines
Système cardiovasculaireDiminution de l'inflammation chronique
Réduction du risque d'événements cardiovasculaires
Réduction de la mortalité cardiovasculaire
Système digestifDiminution du risque de cancer colorectal

Tableau 1. Principaux effets physiologiques des fibres alimentaires. Adapté de Barber (2020).

Globalement, on peut donc voir que la consommation de glucides complexes est optimale pour notre métabolisme, non seulement parce qu’elle assure un apport adéquat en énergie sous forme de sucre, sans provoquer de fluctuations trop importantes de la glycémie, mais aussi parce qu’elle procure au microbiote intestinal les éléments nécessaires à la production de métabolites indispensables à la prévention de plusieurs maladies chroniques et au maintien d’une bonne santé en général.

Sucres modernes

La situation est cependant bien différente pour plusieurs sources de glucides de l’alimentation moderne, en particulier ceux qui sont présents dans les aliments industriels transformés.  Trois grands problèmes sont associés à la transformation :

Les sucres simples.  Les sucres simples (glucose, fructose, galactose, etc.) sont les molécules responsables du goût sucré : l’interaction de ces sucres avec des récepteurs présents au niveau de la langue envoie au cerveau un signal l’alertant de la présence d’une source d’énergie. Le cerveau, qui consomme à lui seul pas moins de 120 g de sucre par jour, raffole du sucre et répond positivement à cette information, ce qui explique notre attirance innée pour les aliments possédant un goût sucré. Par contre, puisque la grande majorité des glucides fabriqués par les plantes sont sous forme de polymères (amidons et fibres), les sucres simples sont en réalité assez rares dans la nature, étant principalement retrouvés dans les fruits, des légumes comme la betterave ou encore certaines graminées (canne à sucre).  C’est donc seulement avec la production industrielle de sucre à partir de la canne à sucre et de la betterave que la « dent sucrée » des consommateurs a pu être satisfaite à une grande échelle et que les sucres simples sont devenus couramment consommés : par exemple, les données recueillies aux États-Unis montrent qu’entre 1820 et 2016, l’apport en sucres simples est passé de 6 lbs (2,7 kg) à 95 lbs (43 kilos) par personne par année, soit une hausse d’environ 15 fois en un peu moins de 200 ans (Figure 2).

Figure 2. Consommation de sucres simples aux États-Unis entre 1820 et 2016.  Tiré de Guyenet (2018).

Notre métabolisme n’est évidemment pas adapté à cet apport très élevé en sucres simples, sans commune mesure avec ce qui est normalement retrouvé dans la nature. Contrairement aux sucres présents dans les glucides complexes, ces sucres simples sont absorbés très rapidement dans la circulation sanguine et causent des hausses très rapides et importantes de la glycémie. Plusieurs études ont montré que les personnes qui consomment fréquemment des aliments contenant ces sucres simples risquent plus de souffrir d’obésité, de diabète de type 2 et de maladies cardiovasculaires. Par exemple, des études ont révélé que la consommation quotidienne de 2 portions de boissons sucrées était associée à une hausse de 35 % du risque de maladie coronarienne. Lorsque la quantité de sucres ajoutés consommés représente 25 % des calories quotidiennes, le risque de maladie du cœur est même triplé. Parmi les facteurs qui contribuent à cet effet néfaste des sucres simples sur la santé cardiovasculaire, mentionnons une augmentation de la tension artérielle et des taux de triglycérides, une diminution du cholestérol-HDL et augmentation du cholestérol-LDL (plus spécifiquement les LDL de petite taille, très denses, qui sont plus nuisibles pour les artères), ainsi qu’une hausse de l’inflammation et du stress oxydatif.

Il faut donc restreindre autant que possible l’apport en sucres simples, qui ne devrait pas  dépasser 10 % de l’apport énergétique quotidien selon l’Organisation mondiale de la santé.  Pour un adulte moyen qui consomme 2000 calories par jour, cela représente seulement 200 calories, soit environ 12 cuillerées à thé de sucre ou l’équivalent d’une seule cannette de boisson gazeuse.

Farines raffinées. Les céréales représentent une des principales sources de glucides (et de calories) dans la plupart des cultures alimentaires du globe. Lorsqu’elles sont sous forme entière, c’est-à-dire qu’elles conservent l’enveloppe externe riche en fibres et le germe renfermant plusieurs vitamines et minéraux, les céréales représentent une source de glucides complexes (amidons) de grande qualité et bénéfique pour la santé. Cet impact positif des grains entiers est bien illustré par la réduction du risque d’accidents coronariens et de la mortalité observée dans un grand nombre d’études populationnelles. Par exemple, des méta-analyses ont récemment montré que la consommation d’environ 50 g de grains entiers par jour était associée à une réduction de 22 à 30 % de la mortalité due aux maladies cardiovasculaires, de 14 à 18 % de la mortalité liée au cancer et de 19 à 22 % de la mortalité totale.

Par contre, ces effets positifs sont complètement abolis lorsque les grains sont raffinés  avec les moulins métalliques industriels modernes pour produire la farine utilisée dans la fabrication d’un très grand nombre de produits couramment consommés (pains, pâtisseries, pâtes, desserts, etc.). En éliminant l’enveloppe externe du grain et son germe, ce procédé permet d’améliorer la texture et la durée de conservation de la farine (les acides gras insaturés du germe sont sensibles au rancissement), mais au prix d’une élimination quasi totale des fibres et d’un appauvrissement marqué en plusieurs éléments nutritifs (minéraux, vitamines, acides gras insaturés, etc.) Les farines raffinées ne contiennent donc essentiellement que du sucre sous forme d’amidon, ce sucre étant beaucoup plus facile  à assimiler en raison de l’absence de fibres qui en temps normal ralentissent la digestion de l’amidon et l’absorption du sucre libéré (Figure 3).

Figure 3. Représentation schématique d’un grain de blé entier et raffiné.

Carence en fibres. Les procédés de fortification permettent de compenser en partie les pertes de certains nutriments (l’acide folique, par exemple) qui se produisent au cours du raffinage des grains céréaliers. Par contre, la perte des fibres lors du raffinage des grains est irréversible et est directement responsable d’une des plus graves carences alimentaires modernes étant donné  les nombreux effets positifs des fibres sur la prévention de plusieurs maladies chroniques.

Glucides de mauvaise qualité

Les sources de glucides de mauvaise qualité, ayant un impact négatif sur la santé, sont donc des aliments contenant une quantité élevée de sucres simples, ayant un contenu plus élevé en grains raffinés qu’en grains entiers ou encore qui renferment une faible quantité de fibres alimentaires (ou plusieurs de ces caractéristiques simultanément). Une façon couramment utilisée pour décrire ces glucides de mauvaise qualité est de comparer la hausse de glycémie qu’ils produisent à celle du glucose pur, ce qu’on appelle l’indice glycémique (IG) (voir encadré). La consommation d’un aliment à indice glycémique élevé cause une hausse rapide et importante de la glycémie, ce qui entraine la sécrétion d’une forte quantité d’insuline par le pancréas pour faire entrer le glucose dans les cellules. Cette hyperinsulinémie peut faire chuter le glucose à des niveaux trop bas, et l’hypoglycémie qui s’ensuit peut paradoxalement stimuler l’appétit, en dépit de l’ingestion d’une forte quantité de sucre quelques heures plus tôt.  À l’inverse, un aliment à faible indice glycémique produit une glycémie plus faible, mais soutenue, ce qui réduit la demande en insuline et permet d’éviter les fluctuations des taux de glucose sanguins souvent observées avec les aliments à indice glycémique élevé. Les pommes de terre, les céréales du petit déjeuner, le pain blanc et les pâtisseries sont tous des exemples d’aliments à indice glycémique élevé, tandis que les légumineuses, les légumes et les noix sont à l’inverse des aliments ayant un indice glycémique faible.

Indice et charge glycémique

L’indice glycémique (IG) est calculé en comparant la hausse de taux de sucre sanguin produite par l’absorption d’un aliment donné à celle du glucose pur. Par exemple, un aliment qui a un indice glycémique de 50 (lentilles, par exemple) produit une glycémie moitié moins importante que le glucose (qui, lui, a un index glycémique de 100). En règle générale, on considère que des valeurs inférieures à 50 correspondent à un IG faible alors que celles qui sont supérieures à 70 sont élevées. L’indice glycémique ne tient pas cependant pas compte de la quantité de glucides présents dans les aliments et il est souvent plus approprié d’utilisé le concept de charge glycémique (CG). Par exemple, même si le melon d’eau et les céréales du petit déjeuner possèdent toutes deux des IG élevés (75), le faible contenu en glucides du melon (11 g pour 100 g) équivaut à une charge glycémique de 8 alors que les 26 g de glucides présents dans ce type de céréales entraînent une charge de 22, soit trois fois plus. Des CG ≥ 20 sont considérées comme étant élevées, de niveau intermédiaire lorsque situées entre 11-19, et faibles lorsque ≤ 10.

Étude PURE

Des résultats provenant de l’étude épidémiologique PURE (Prospective Urban and Rural Epidemiology), menée par le cardiologue canadien Salim Yusuf, viennent de confirmer le lien existant entre les glucides de mauvaise qualité et le risque de maladies cardiovasculaires.  Dans la première de ces études, publiée dans le prestigieux New England Journal of Medicine, les chercheurs ont examiné l’association entre l’indice glycémique et la charge glycémique totale de l’alimentation et l’incidence d’accidents cardiovasculaires majeurs (infarctus, AVC, mort subite, insuffisance cardiaque) chez plus de 130,000 participants âgés de 35 à 70 ans, répartis sur l’ensemble des cinq continents. L’étude révèle qu’une alimentation ayant un indice glycémique élevé est associée à une hausse significative (25 %) du risque de subir un accident cardiovasculaire majeur chez les personnes sans maladie cardiovasculaire, une augmentation qui atteint 51 % chez celles qui ont une maladie cardiovasculaire préexistante (Figure 4).  Une tendance similaire est observée pour la charge glycémique, mais dans ce dernier cas, la hausse du risque semble toucher seulement les personnes ayant une maladie cardiovasculaire au début de l’étude.


Figure 4. Comparaison du risque d’accidents cardiovasculaires selon l’indice ou la charge glycémique de l’alimentation de personnes en bonne santé (bleu) ou avec des antécédents de maladies cardiovasculaires (rouge). Les valeurs médianes des index glycémiques étaient de 76 pour le quintile 1 et de 91 pour le quintile 5.  Pour la charge glycémique, les valeurs moyennes étaient de 136 g de glucides par jour pour le Q1 et de 468 g par jour pour le Q5. Notez que la hausse du risque d’accidents cardiovasculaires associée à un indice ou une charge glycémique élevée est principalement observée chez les participants ayant une maladie cardiovasculaire préexistante.  Tiré de Jenkins et coll. (2021).

L’impact de l’indice glycémique semble particulièrement prononcé chez les personnes en surpoids (Figure 5).  Ainsi, alors que la hausse du risque d’accidents cardiovasculaires majeurs est de 14 % chez les personnes minces, ayant un IMC inférieur à 25, elle atteint 38 % chez celles qui souffrent d’embonpoint (IMC supérieur à 25).


Figure 5. Impact du surpoids sur la hausse du risque d’accidents cardiovasculaires lié à l’indice glycémique de l’alimentation.  Les valeurs indiquées représentent la hausse du risque d’accidents cardiovasculaires observée pour chaque catégorie (quintiles 2 à 5) d’indice glycémique comparativement à la catégorie présentant l’indice le plus bas (quintile 1).  Les valeurs médianes des indices glycémiques étaient de 76 pour le quintile 1; 81 pour le quintile 2; 86 pour le quintile 3; 89 pour le quintile 4 et de 91 pour le quintile 5.  Tiré de Jenkins et coll. (2021).

Ce résultat n’est pas tellement étonnant, dans la mesure où on sait depuis longtemps que l’excès de graisse perturbe le métabolisme du sucre, notamment en produisant une résistance à l’insuline.  Une alimentation ayant un indice glycémique élevé exacerbe donc la hausse de la glycémie postprandiale déjà en place en raison de l’excès de poids, ce qui conduit à une hausse plus grande du risque de maladies cardiovasculaires. Le message à tirer de cette étude est donc très clair : une alimentation contenant trop de sucres facilement assimilables, telle que mesurée à l’aide de l’indice glycémique, est associée à une hausse significative du risque de subir un accident cardiovasculaire majeur.  Le risque de ces accidents est particulièrement prononcé pour les personnes dont l’état de santé n’est pas optimal, soit en raison de la présence d’un excès de graisse ou d’une maladie cardiovasculaire préexistante (ou les deux).  Diminuer l’indice glycémique de l’alimentation en consommant plus d’aliments contenant des glucides complexes (fruits, légumes, légumineuses, noix) et moins de produits contenant des sucres ajoutés ou des farines raffinées représente donc un prérequis essentiel pour prévenir le développement des maladies cardiovasculaires.

Farines raffinées

Un autre volet de l’étude PURE s’est penché plus spécifiquement sur les farines raffinées comme source de sucres facilement assimilables pouvant augmenter anormalement la glycémie et hausser le risque de maladies cardiovasculaires.   Les chercheurs ont observé qu’un apport élevé (350 g par jour, soit 7 portions) en produits contenant des farines raffinées (pain blanc, céréales du petit déjeuner, biscuits, craquelins, pâtisseries) était associé à une hausse de 33 % du risque de maladie coronarienne, de 47 % du risque d’AVC et de 27 % du risque de mort prématurée. Ces observations confirment donc l’impact négatif des farines raffinées sur la santé et l’importance d’inclure autant que possible des aliments contenant des grains entiers dans l’alimentation. Le potentiel préventif de cette modification alimentaire toute simple est énorme puisque la consommation de grains entiers demeure extrêmement faible, avec la majorité de la population des pays industrialisés qui consomment quotidiennement moins de 1 portion de céréales entières, soit bien en deçà du minimum recommandé (la moitié de tous les produits céréaliers consommés, soit environ 5 portions par jour).

Les pains complets demeurent une excellente façon de hausser l’apport en grains entiers.  Il faut cependant porter une attention particulière à la liste d’ingrédients : au Canada, la loi permet de retirer jusqu’à 5 % du grain lors de la fabrication de la farine de blé entier, et la partie éliminée contient la majeure du germe et une fraction du son (fibres). Ce type de pain est supérieur au pain blanc, mais il est préférable de choisir des produits à base de farines intégrales qui, elles, contiennent toutes les parties du grain. Notons aussi que les pains multicéréales (7-14 grains) contiennent toujours 80 % de farine de blé et d’un maximum de 20 % d’un mélange d’autres céréales (sinon le pain ne lève pas). Le nombre de grains importe donc peu et ce qui compte est que la farine soit de blé entier ou idéalement intégrale, ce qui n’est pas toujours le cas.

En somme, une façon simple de diminuer le risque d’accidents cardiovasculaires et d’améliorer la santé en général est de remplacer autant que possible l’apport en aliments riches sucres simples et en farines raffinées par des aliments d’origine végétale, contenant des glucides complexes. En plus des glucides, cette simple modification influencera à elle seule la nature des protéines et des lipides ingérés ainsi que, du même coup, l’ensemble des phénomènes qui favorisent l’apparition et la progression des plaques d’athérosclérose.

Suppléments d’acides gras oméga-3 : inefficaces pour la prévention des maladies cardiovasculaires

Suppléments d’acides gras oméga-3 : inefficaces pour la prévention des maladies cardiovasculaires

EN BREF

  • L’étude VITAL auprès de participants qui n’avaient pas de maladie cardiovasculaire et l’étude ASCEND auprès de patients diabétiques n’ont pas montré d’effet bénéfique des suppléments d’acides gras oméga-3 sur la santé cardiovasculaire.
  • L’étude REDUCE-IT a rapporté un effet bénéfique d’un supplément d’acide gras oméga-3 (Vascepa®), alors que l’étude STRENGTH a rapporté une absence d’effet d’un autre supplément (Epanova®).
  • Les résultats divergents des études REDUCE-IT et STRENGTH ont soulevé une controverse scientifique, principalement au sujet de l’utilisation discutable de l’huile minérale comme placebo neutre dans l’étude REDUCE-IT.
  • Dans l’ensemble, les résultats des études amènent a conclure à l’inefficacité des suppléments d’acides gras oméga-3 pour prévenir les maladies cardiovasculaires, en prévention primaire et fort probablement aussi en prévention secondaire.

La consommation de poisson sur une base régulière (1 à 2 fois par semaine) est associée à une réduction du risque de mortalité causée par la maladie coronarienne (voir ces méta-analyses ici et ici). De plus, des associations favorables entre la consommation de poisson et les risques de diabète de type 2, d’accident vasculaire cérébral, de démence, de maladie d’Alzheimer et de déclin cognitif ont aussi été identifiées (voir notre article sur le sujet).

Un grand nombre d’études ont suggéré que ce sont principalement les acides gras oméga-3 (O-3), un type d’acide gras polyinsaturé à très longue chaîne présent en grande quantité dans plusieurs espèces de poissons, qui sont la cause des effets favorables sur la santé que procure la consommation de poisson et autres fruits de la mer. Par exemple, une méta-analyse de 17 études prospectives publiée en 2021 indique que le risque de mourir prématurément était significativement moins élevé (15-18 %) chez les participants qui avaient le plus d’O-3 circulants, par comparaison à ceux qui en avaient le moins. De plus, des associations favorables de même ampleur ont été observées pour la mortalité d’origine cardiovasculaire et celle liée au cancer.

Puisque manger du poisson est associé à une meilleure santé cardiovasculaire pourquoi ne pas isoler le « principe actif », c.-à-d. les acides gras oméga-3 qu’il contient et en faire des suppléments ? Cela semblait être une excellente idée ; c’est d’ailleurs la même approche pharmacologique qui a été appliquée avec succès sur une foule de plantes, champignons et microorganismes, ce qui a permis de créer des médicaments. On pense ici par exemple à l’aspirine, un dérivé de l’acide salicylique retrouvée dans l’écorce de certaines espèces d’arbres, la quinine extraite de l’arbuste quinquina (antipaludéen), la digitaline extraite de la digitale pourpre (traitement de problèmes cardiaques), le paclitaxel extrait de l’if (anticancéreux), etc.

Les suppléments d’O-3 d’origine marine sont-ils autant, voir même plus efficaces que l’aliment entier duquel ils sont extraits ? Plusieurs études randomisées contrôlées (ERC) ont été réalisées durant les dernières années pour tenter de prouver l’efficacité des O-3. Les méta-analyses des ERC (voir ici et ici) indiquent que les suppléments d’O-3 (EPA et DHA) n’ont pas ou très peu d’effet en prévention primaire, c.-à-d. sur le risque d’avoir une maladie cardiovasculaire ou de mourir prématurément d’une maladie cardiovasculaire ou de toute autre cause. Par contre, des données provenant de certaines études indiquaient que les suppléments d’O-3 pourraient avoir des effets bénéfiques en prévention secondaire, c.-à-d. chez des personnes atteintes d’une maladie cardiovasculaire.

Afin d’obtenir un niveau de preuve plus élevé, plusieurs grandes études bien planifiées et contrôlées ont été réalisées récemment : ASCEND, VITAL, STRENGTH et REDUCE-IT.

L’étude VITAL (VITamin D and omegA-3 TriaL) auprès de 25 871 participants qui n’avaient pas de maladie cardiovasculaire et l’étude ASCEND (A Study of Cardiovascular Events iN Diabetes) auprès de 15 480 patients diabétiques n’ont pas montré d’effet bénéfique des suppléments d’O-3 sur la santé cardiovasculaire.

Sont parus ensuite les résultats des études REDUCE-IT (REDUction of Cardiovascular Events with Icosapent ethyl-Intervention Trial) et STRENGTH (Outcomes Study to Assess STatin Residual Risk Reduction With EpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia). Les résultats de ces études étaient particulièrement attendus puisqu’elles ont testé l’effet des suppléments d’O-3 sur les accidents vasculaires majeurs à de fortes doses (3000-4000 mg d’O-3/jour) chez des patients à risque traités avec une statine afin de réduire le cholestérol sanguin, mais qui avaient des taux élevés de triglycérides.

Les résultats des deux études sont divergents, ce qui a soulevé une controverse scientifique. L’étude REDUCE-IT a rapporté une réduction importante de 25 % du nombre d’événements cardiovasculaires dans le groupe de patients qui a pris quotidiennement un supplément d’O-3 (Vascepa® ; éthyl-EPA), par comparaison au groupe de patients qui a pris un placebo (huile minérale). L’étude STRENGTH a rapporté une absence d’effet de suppléments d’O-3 (Epanova® ; un mélange d’EPA et de DHA sous forme d’acides carboxyliques) sur les événements cardiovasculaires majeurs chez des patients traités avec une statine, comparé au groupe de patients qui a pris un placebo d’huile de maïs.

Plusieurs hypothèses ont été proposées pour expliquer les résultats différents entre les deux grandes études. L’une d’entre elles est que l’huile minérale utilisée comme placebo dans l’étude REDUCE-IT pourrait avoir provoqué des effets défavorables qui auraient conduit à un effet faussement positif du supplément d’O-3. En effet, l’huile minérale n’est pas un placebo neutre puisqu’il a causé une hausse moyenne de 37 % de la protéine C-réactive (CRP), un marqueur de l’inflammation systémique dans le groupe témoin, ainsi qu’une hausse 7,4 % du cholestérol-LDL et de 6,7 % de l’apolipoprotéine B par comparaison au groupe qui a pris le Vascepa. Ces trois biomarqueurs sont associés à une hausse du risque d’événements cardiovasculaires.

Deux autres hypothèses pourraient expliquer la différence entre les deux études. Il est possible que les niveaux plasmatiques modérément plus élevés d’EPA obtenus dans l’étude REDUCE-IT puissent être la cause des effets bénéfiques observés dans cette étude, ou que le DHA utilisé en combinaison avec l’EPA dans l’étude STRENGTH puisse avoir contrecarré les effets bénéfiques de l’EPA.

Pour tester ces deux hypothèses, les chercheurs responsables de l’étude STRENGTH ont procédé à des analyses a posteriori des données recueillies lors de leur essai clinique. Les patients ont été classés selon leur niveau plasmatique d’EPA après 12 mois de prise quotidienne de supplément d’O-3. Ainsi, dans le premier tertile les patients avaient une concentration plasmatique moyenne d’EPA de 30 µg/mL, ceux du deuxième tertile : 90 µg/mL et ceux du troisième tertile : 151 µg/mL. La concentration plasmatique moyenne d’EPA dans le troisième tertile (151 µg/mL) est comparable à celle rapportée dans l’étude REDUCE-IT (144 µg/mL). Les analyses montrent qu’il n’y avait pas d’association entre la concentration plasmatique d’EPA ou de DHA et le nombre d’événements cardiovasculaires majeurs. Les auteurs concluent à l’absence de bénéfices pour la prise de suppléments d’O-3 en prévention secondaire, mais suggèrent que d’autres études devraient être menées dans l’avenir pour comparer l’huile minérale et l’huile de maïs comme placebo et aussi pour comparer différentes formulations d’acides gras oméga-3.

Dans l’ensemble, les résultats des études récentes amènent à conclure à l’inefficacité des suppléments d’O-3 pour prévenir les maladies cardiovasculaires, en prévention primaire et fort probablement aussi en prévention secondaire. Il est à noter que, pris en grande quantité, les suppléments d’O-3 peuvent avoir des effets indésirables. En effet, dans les deux études STRENGTH et REDUCE-IT, l’incidence de fibrillation auriculaire était significativement plus élevée avec la prise de suppléments d’O-3. De plus, les saignements étaient plus fréquents chez les patients qui ont pris l’éthyl-EPA (Vascepa®) dans l’étude REDUCE-IT que chez les patients qui ont pris le placebo. Il semble donc plus avisé de manger du poisson 1 à 2 fois par semaine pour se maintenir une bonne santé que de prendre des suppléments inefficaces et coûteux.

 

 

Pourquoi les Japonais ont-ils l’espérance de vie la plus élevée au monde ?

Pourquoi les Japonais ont-ils l’espérance de vie la plus élevée au monde ?

EN BREF

  • Les Japonais ont l’espérance de vie à la naissance la plus élevée parmi les pays du G7.
  • L’espérance de vie plus élevée des Japonais est due principalement à moins de décès causés par des cardiopathies ischémiques, incluant l’infarctus du myocarde, et par des cancers (du sein et de la prostate en particulier).
  • Cette longévité exceptionnelle s’explique par un faible taux d’obésité et un régime alimentaire unique, caractérisé par une faible consommation de viande rouge, et une consommation élevée de poissons et d’aliments provenant de plantes tels le soja et le thé.

Plusieurs régimes alimentaires sont favorables au maintien d’une bonne santé et pour la prévention des maladies cardiovasculaires : le régime méditerranéen, le régime DASH (Dietary Approaches to Stop Hypertension), le régime végétarien et le régime alimentaire japonais. Nous faisons souvent référence à l’Observatoire de la prévention au régime méditerranéen, car il est bien établi scientifiquement que ce régime alimentaire est particulièrement favorable pour la santé cardiovasculaire (voir nos articles sur le sujet ici, ici, et ici). Sachant que les Japonais ont l’espérance de vie la plus élevée parmi les pays du G7, le régime alimentaire particulier au Japon a aussi retenu l’attention des experts et d’un public averti durant les dernières années.

Espérance de vie des Japonais
Parmi les pays du G7, c’est au Japon que l’espérance de vie à la naissance est la plus élevée selon les données de l’OCDE de 2016, particulièrement pour les femmes. Les hommes japonais ont une espérance de vie un peu plus élevée (81,1 années) que celle des hommes canadiens (80,9 années), alors que l’espérance de vie des Japonaises (87,1 années) est significativement plus élevée (de 2,4 années) que celle des Canadiennes (84,7 années). L’espérance de vie en santé des Japonais, 74,8 années, est aussi plus élevée qu’au Canada (73,2 années).

L’espérance de vie plus élevée des Japonais est due principalement à moins de décès causés par des cardiopathies ischémiques et par des cancers, particulièrement les cancers du sein et de la prostate. Cette faible mortalité est principalement attribuable à un faible taux d’obésité, à une faible consommation de viande rouge, et une consommation élevée de poissons et d’aliments provenant de plantes tels le soja et le thé. Au Japon le taux d’obésité est peu élevé (4,8 % pour les hommes et 3,7 % pour les femmes). Par comparaison, au Canada 24,6 % des hommes adultes et 26,2 % des femmes adultes étaient obèses (IMC≥ 30) en 2016. L’obésité est un facteur de risque important aussi bien pour les cardiopathies ischémiques que pour plusieurs types de cancers.

Pourtant, au début des années 1960 l’espérance de vie des Japonais était la moins élevée des pays du G7, principalement à cause de la mortalité élevée due aux maladies vasculaires cérébrales et au cancer de l’estomac. La baisse de consommation de sel et d’aliments salés est en partie responsable de la baisse de la mortalité causée par les maladies vasculaires cérébrales et par le cancer de l’estomac. Les Japonais consommaient en moyenne 14,5 g de sel/jour en 1973 et probablement davantage avant cela. Ils mangent de nos jours moins de sel (9,5 g/jour en 2017), mais c’est tout de même trop. Les Canadiens consomment aujourd’hui en moyenne environ 7 g de sel/jour (2,76 g de sodium/jour), soit presque le double de l’apport recommandé par Santé Canada.

Le régime alimentaire japonais
Comparativement aux Canadiens, Français, Italiens et Américains, les Japonais consomment beaucoup moins de viande (particulièrement la viande de bœuf), de produits laitiers, de sucres et d’édulcorants, de fruits et de pommes de terre, mais beaucoup plus de poissons et de fruits de mer, de riz, de soja et de thé (Tableau 1). En 2017, les Japonais consommaient en moyenne 2697 kilocalories par jour selon la FAO, significativement moins qu’au Canada (3492 kcal par jour), en France (3558 kcal par jour), en Italie (3522 kcal par jour) ou aux États-Unis (3766 kcal par jour).

Tableau 1. Approvisionnement alimentaire (kg/habitant/an) dans certains pays industrialisés en 2013a.

a Tableau adapté de Tsugane, 2020. Données de la FAO : FAOSTAT (Food balance data) (http://www.fao.org/).

Moins de viande rouge, plus de poissons et de fruits de mer
Les Japonais mangent en moyenne presque deux fois moins de viande qu’un Canadien (46 % moins), mais deux fois plus de poissons et fruits de mer. Cette différence considérable se traduit par un apport alimentaire réduit en acides gras saturés, qui est associé à un risque moindre de cardiopathies ischémiques, mais à un risque accru d’AVC. Au contraire, l’apport alimentaire en acides gras oméga-3 contenu dans les poissons et fruits de mer est associé à une diminution du risque de cardiopathies ischémiques. La consommation moindre de viande rouge et celle plus élevée de poissons et fruits de mer par les Japonais pourraient donc expliquer la plus faible mortalité causée par des cardiopathies ischémiques et la mortalité plus élevée causée par les maladies cérébrovasculaires au Japon. Les experts pensent que la baisse de la mortalité due aux maladies vasculaires cérébrales est associée à des changements dans le régime alimentaire japonais : augmentation de la consommation de produits à base d’animaux, produits laitiers et par conséquent de gras saturés et de calcium (une consommation qui demeure modérée), combinée avec une baisse de la consommation de sel. En effet, contrairement à ce qui est observé en Occident, la consommation de gras saturés au Japon est associée à une réduction du risque d’AVC hémorragique et dans une moindre mesure d’AVC ischémique, selon une méta-analyse d’études prospectives. On ne connaît pas la cause de cette différence, mais elle pourrait être attribuable à une susceptibilité génétique ou à des facteurs confondants selon les auteurs de la méta-analyse.

Soja
Le soja est un aliment surtout consommé en Asie, incluant le Japon où il est consommé tel quel après cuisson (edamame) et surtout sous forme transformée, par fermentation (sauce de soja, pâte de miso, nattō) ou par coagulation du lait de soja (tōfu). C’est une source importante d’isoflavones, des molécules qui ont des propriétés anticancer et qui sont favorables à une bonne santé cardiovasculaire. La consommation d’isoflavones par les Asiatiques a été associée à un risque moindre de cancer du sein et de la prostate. (voir notre article sur le sujet)

Sucre
Les Japonais consomment relativement peu de sucres et de féculents, ce qui explique en partie la faible prévalence de l’obésité et des maladies associées à l’obésité tels les cardiopathies ischémiques et le cancer du sein.

Thé vert
Les Japonais consomment généralement le thé vert sans sucre ajouté. Des études prospectives réalisées au Japon montrent que la consommation de thé vert est associée à un risque moindre de mortalité de toute cause et de mortalité d’origine cardiaque (voir notre article sur le sujet).

Occidentalisation des habitudes alimentaires des Japonais
L’occidentalisation du régime japonais survenue après la Deuxième Guerre mondiale a permis aux habitants de ce pays d’être en meilleure santé et de diminuer la mortalité causée par les maladies infectieuses, la pneumonie et les maladies cérébrovasculaires, et ainsi augmenter considérablement leur espérance de vie. Une enquête sur les habitudes alimentaires de 88 527 Japonais de 2003 à 2015 indique que cette occidentalisation se poursuit. En se basant sur la consommation quotidienne de 31 groupes d’aliments, les chercheurs ont identifié trois grands types d’habitudes alimentaires :

1- Aliments à base de plantes et poisson
Consommation élevée de légumes, fruits, légumineuses, pommes de terre, champignons, algues, légumes marinés, riz, poisson, sucre, assaisonnements à base de sel et thé.

2- Pain et produits laitiers
Consommation élevée de pain, produits laitiers, fruits et sucre. Faible consommation de riz.

3- Aliments d’origine animale et huiles
Consommation élevée de viande rouge et transformée, œufs, huiles végétales.

Une tendance à la baisse du groupe « aliments à base de plantes et poisson » (la base du régime alimentaire traditionnel japonais ou washoku) a été observée chez tous les groupes d’âge. Une hausse du groupe « pain et produits laitiers » a été observée chez les groupes d’âge de 50-64 et ≥65 ans, mais pas chez les plus jeunes. Pour le groupe « aliments d’origine animale et huiles », une tendance à la hausse a été observée durant les treize années de l’étude chez tous les groupes d’âge sauf celui des plus jeune (20-34 ans). Les Japonais mangent de plus en plus comme des Occidentaux, cela aura-t-il un effet défavorable sur leur santé et leur espérance de vie ? Il est trop tôt pour qu’on puisse le savoir, les prochaines décennies nous le diront.

Contribution de gènes et du mode vie à la santé des Japonais
Certains facteurs de risque de maladie cardiovasculaire et du cancer sont héréditaires, alors que d’autres sont associés au mode de vie (alimentation, tabagisme, exercice, etc.). Il y a eu une immigration importante des Japonais aux États-Unis (surtout en Californie et Hawaï) et en Amérique du Sud (Brésil, Pérou) au tournant du 20e siècle. Après quelques générations, les descendants des migrants japonais ont adopté le mode de vie des pays d’accueil. Alors que le Japon présente l’une des plus faibles incidences de maladies cardiovasculaires au monde, cette incidence a doublé chez les Japonais qui ont migré à Hawaï et quadruplé chez ceux qui ont choisi de vivre en Californie selon une étude réalisée en 1975. Ce qui est surprenant c’est que cette hausse a été observée indépendamment de la tension artérielle ou du taux de cholestérol, et semble plutôt directement liée à l’abandon du mode de vie traditionnel japonais par les migrants.

Depuis les années 1970, le taux de cholestérol moyen des Japonais a néanmoins augmenté, mais malgré cela et le taux élevé de tabagisme dans ce pays, l’incidence de maladie coronarienne demeure substantiellement moins élevée au Japon qu’en Occident. Pour mieux comprendre ces différences, une étude réalisée en 2003 a comparé les facteurs de risques et l’alimentation de Japonais vivant au Japon et des migrants japonais de la 3e et 4e génération vivant à Hawaï aux États-Unis. La pression artérielle des hommes était significativement plus élevée chez les Japonais que chez les Nippo-Américains, alors qu’il n’y avait pas de différence significative pour les femmes. Les Japonais étaient beaucoup moins nombreux à être traités pour l’hypertension qu’à Hawaï. Les Japonais étaient plus nombreux à fumer (surtout les hommes) que les Nippo-Américains. L’indice de masse corporelle, les taux sanguins de cholestérol-LDL, de cholestérol total, d’hémoglobine glyquée (indicateur pour le diabète) et de fibrinogène (marqueur de l’inflammation) étaient significativement moins élevés au Japon qu’à Hawaï. Le cholestérol-HDL (le « bon » cholestérol) était plus élevé chez les Japonais que chez les Nippo-Américains. L’apport alimentaire en gras totaux, acides gras saturés (nuisibles à la santé cardiovasculaire) était moins élevé au Japon qu’à Hawaï. Au contraire, l’apport en acides gras polyinsaturés et en acides gras oméga-3 (favorables à une bonne santé cardiovasculaire) était plus élevé au Japon qu’à Hawaï. Ces différences pourraient expliquer en partie l’incidence moins élevée de maladie coronarienne au Japon que dans les pays industrialisés occidentaux.

En d’autres mots, même si ces migrants ont le même risque de base que leurs compatriotes demeurés dans le pays d’origine (âge, sexe et hérédité), le simple fait d’adopter les habitudes de vie de leur pays d’accueil est suffisant pour augmenter considérablement leur risque de maladies cardiovasculaires.

Même si le régime alimentaire japonais est différent de ceux des pays occidentaux, il a des caractéristiques similaires au régime méditerranéen. Pourquoi ne pas préparer de temps à autre de délicieux plats japonais à base de soja (tōfu, edamame, soupe au miso par exemple), boire du thé vert, manger moins de viande, sucre et féculents et davantage de poisson ? Non seulement vos repas seront plus variés, mais vous pourriez profiter des bienfaits pour la santé que procure le régime alimentaire japonais.

 

 

 

Diminuer l’apport calorique en mangeant plus de végétaux

Diminuer l’apport calorique en mangeant plus de végétaux

EN BREF

 

  • 20 volontaires ont été nourris avec un régime faible en gras ou faible en glucides  à tour de rôle pendant deux semaines.
  • Les participants soumis au régime faible en gras consommaient en moyenne près de 700 calories par jour de moins qu’avec le régime faible en glucides, une diminution corrélée avec une perte plus importante de masse adipeuse.
  • Comparativement au régime faible en glucides, le régime faible en gras a aussi entrainé une baisse des taux de cholestérol, une diminution de l’inflammation chronique et une baisse du rythme cardiaque et de la pression artérielle.
  • Globalement, ces résultats suggèrent qu’une alimentation principalement composée de végétaux et faible en gras est optimale pour la santé cardiovasculaire, autant pour sa supériorité à diminuer l’apport calorique que pour son impact positif sur plusieurs facteurs de risque de maladies cardiovasculaires.
On estime qu’il y a actuellement dans le monde environ 2 milliards de personnes en surpoids, dont 600 millions qui sont obèses.  Ces statistiques sont vraiment alarmantes, car il est clairement établi que l’excès de graisse favorise le développement de plusieurs maladies qui diminuent l’espérance de vie en bonne santé, notamment les maladies cardiovasculaires, le diabète de type 2 et plusieurs types de cancers.   L’identification des facteurs responsables de cette forte prévalence de surpoids et des moyens susceptibles de renverser le plus rapidement possible cette tendance est donc primordiale pour améliorer la santé de la population et éviter des pressions insoutenables sur les systèmes de santé publics dans un proche avenir.

Déséquilibre énergétique

La cause fondamentale du surpoids, et de l’obésité en particulier, est un apport calorique qui excède les besoins énergétiques du corps. Pour perdre du poids, il s’agit donc essentiellement de rétablir l’équilibre entre les calories ingérées et les calories dépensées.

Cela peut sembler simple en théorie, mais, en pratique, la plupart des gens éprouvent énormément de difficulté à perdre du poids. D’une part, il est beaucoup plus facile de grossir que de maigrir : au cours de l’évolution, nous avons dû faire face à des périodes de disettes prolongées (et même de famine, dans certains cas) et notre métabolisme s’est adapté à ces carences en devenant extrêmement performant pour accumuler et conserver l’énergie sous forme de graisse. D’autre part, l’environnement dans lequel nous vivons actuellement encourage fortement la surconsommation de nourriture : nous sommes littéralement submergés par une variété infinie de produits alimentaires attrayants, souvent peu coûteux, facilement accessibles et promus par un marketing très agressif qui encourage leur consommation.  L’épidémie actuelle de surpoids et d’obésité reflète donc à la fois notre prédisposition biologique à accumuler des réserves sous forme de graisse, une prédisposition qui est exacerbée par l’environnement obésogène qui nous entoure.

Manger moins pour rétablir l’équilibre

La tendance innée du corps à conserver l’énergie stockée en réserve sous forme de graisse fait en sorte qu’il est extrêmement difficile de maigrir en « brûlant » ces calories excédentaires par une augmentation du niveau d’activité physique.  Par exemple,  une personne qui mange un simple morceau de tarte au sucre (400 calories) devra marcher environ 6,5 km pour dépenser complètement ces calories, ce qui est bien sûr impossible à faire sur une base quotidienne. Cela ne signifie pas que l’exercice est complètement inutile pour perdre du poids :  la recherche des dernières années montre que l’exercice peut cibler spécifiquement certaines réserves de graisse, en particulier au niveau abdominal.   Les études montrent également qu’une activité physique régulière est très importante pour le maintien à long terme du poids perdu par un régime hypocalorique.  Par contre, il n’y a pas de doute que ce sont d’abord et avant tout les calories consommées qui sont les facteurs déterminants dans la prise de poids.  D’ailleurs, contrairement à ce qu’on peut penser, les niveaux d’activité physique n’ont pratiquement pas changé depuis les trente dernières années dans les pays industrialisés, et la hausse phénoménale du nombre de personnes en surpoids est donc principalement une conséquence d’une surconsommation de nourriture.  L’exercice est indispensable à la prévention de l’ensemble des maladies chroniques et au maintien d’une bonne santé en général, mais son rôle dans la perte de poids est relativement mineur.  Pour les personnes en surpoids, la seule façon réaliste de maigrir significativement, et surtout de maintenir ces pertes sur des périodes prolongées, est donc de diminuer l’apport calorique.

Moins de sucre ou moins de gras ?

Comment y arriver ? Premièrement, il est important de réaliser que la hausse fulgurante du nombre de personnes en surpoids a coïncidé avec une plus grande disponibilité d’aliments riches en sucre ou de gras (et parfois les deux à la fois).  Tous les pays du monde, sans exception, qui ont adopté ce type d’alimentation ont vu leur taux de surpoids grimper en flèche et il est donc vraisemblable que ce changement dans les habitudes alimentaires joue un rôle primordial dans l’épidémie actuelle d’obésité.

Les contributions respectives du sucre et du gras à cette augmentation de l’apport calorique et au surpoids font cependant encore aujourd’hui l’objet d’un vigoureux débat :

1) D’un côté, il a été proposé que les aliments riches en gras sont particulièrement obésogènes, car les graisses sont deux fois plus caloriques que les glucides, sont moins efficaces pour provoquer un sentiment de satiété et améliorent les propriétés organoleptiques des aliments, ce qui globalement encourage une surconsommation (bien souvent inconsciente) de nourriture. En conséquence, la meilleure façon d’éviter de trop manger et de développer un surpoids serait de réduire l’apport total en gras (en particulier en gras saturés en raison de leur impact négatif sur les taux de cholestéol-LDL) et de les remplacer par des sources de glucides complexes (végétaux, légumineuses, céréales à grains entiers).  C’est ce qu’on appelle familièrement l’approche faible en gras (« low-fat »), préconisée par exemple par le régime Ornish.

2) De l’autre côté, on propose exactement l’inverse, c’est-à-dire que ce serait surtout les glucides qui contribueraient à une surconsommation de nourriture et à la hausse de l’incidence d’obésité.  Selon ce modèle, les glucides présents dans les aliments sous forme de sucres libres ou de farines raffinées provoquent une hausse marquée des taux d’insuline, ce qui cause un stockage massif de l’énergie dans le tissu adipeux. En conséquence, moins de calories demeurent disponibles dans la circulation pour être utilisées par le reste du corps, provoquant une hausse de l’appétit et une surconsommation de nourriture pour compenser ce manque. Autrement dit, ce ne serait pas parce qu’on mange trop qu’on engraisse, mais plutôt parce qu’on est trop gros qu’on mange trop.

En empêchant des fluctuations trop importantes des taux d’insulines, une alimentation faible en glucides (« low-carb ») permettrait donc de limiter l’effet anabolique de cette hormone et, par conséquent, d’empêcher de trop manger et d’accumuler un excès de graisse.

Moins de gras au menu, moins de calories ingérées

Pour comparer l’impact des régimes « low-carb » et « low-fat » sur l’apport calorique, le groupe du Dr Kevin Hall (NIH) a recruté 20 volontaires qu’ils ont nourris avec chacun de ces régimes à tour de rôle pendant deux semaines.  La force de ce type d’étude croisée est que chacun des participants consomme les deux types de régimes et qu’on peut donc comparer directement leurs effets sur une même personne.

Comme l’illustre la Figure 1, les deux régimes étudiés étaient complètement à l’opposé l’un de l’autre, avec 75 % des calories du régime « low-fat » (LF)  qui provenaient des glucides contre seulement 10 % provenant des graisses, tandis que dans le régime « low-carb » (LC), 75 % des calories sont sous forme de graisses, comparativement à seulement 10 % qui proviennent des glucides.  Le régime LF à l’étude était exclusivement composé d’aliments d’origine végétale (fruits, légumes, légumineuses, légumes racines, produits de soja, grains entiers, etc.), tandis que le régime LC contenait principalement (82 %) des aliments d’origine animale (viande, volaille, poisson, œufs, produits laitiers).

Figure 1.  Comparaison des quantités de glucides, lipides et protéines présentes dans les régimes faibles en glucides (LC) et faibles en gras (LF) consommés par les participants de l’étude.

L’étude montre qu’il existe effectivement une grande différence entre les deux types de régimes quant au nombre de calories consommées par les participants (Figure 2). Sur une période de deux semaines, les participants qui se nourrissaient avec un régime LF (faible en gras) consommaient en moyenne près de 700 calories (kcal) par jour de moins qu’avec un régime LC (faible en glucides).  Cette différence de l’apport calorique est observée pour l’ensemble des repas, autant au petit déjeuner (240 calories de moins pour le régime LF), au diner (143 calories de moins), au souper (195 calories de moins) que lors des collations prises entre les repas (128 calories de moins).  Cette diminution n’est pas causée par une différence d’appréciation des deux régimes par les participants, car des analyses parallèles n’ont noté aucune différence dans le niveau d’appétit des participants, ni dans le degré de satiété et de satisfaction générées suite à la consommation de l’un ou l’autre des régimes.  Par contre, le régime LF était composé exclusivement d’aliments d’origine végétale et donc beaucoup plus riche en fibres non digestibles (60 g par jour comparativement à seulement 20 g pour le régime LC) qui diminuent grandement la densité énergétique des repas (quantité de calories par g de nourriture) comparativement à celle du régime LC, riche en gras.  Il est donc fort probable que cette différence de densité énergétique contribue à l’apport calorique plus faible observé pour le régime LF faible en gras.

Dans l’ensemble, ces résultats indiquent donc qu’une alimentation constituée de végétaux, et donc faible en gras et riche en glucides complexes, est plus efficace qu’une alimentation principalement composée de produits animaux, riche en gras et faible en glucides, pour limiter l’apport calorique.

Figure 2.  Comparaison de l’apport calorique quotidien des participants soumis à un régime faible en glucides (LC) ou faible en gras (LF). Tiré de Hall et coll. (2021).

Perte de poids

Malgré la différence significative de l’apport calorique observée entre les deux régimes, leur impact respectif sur la perte de poids à court terme est plus nuancé. À première vue, le régime LC a semblé plus efficace que le régime LF pour provoquer une perte rapide de poids, avec environ 1 kg de perdu en moyenne dès la première semaine et presque 2 kg après deux semaines, comparativement à seulement 1 kg après deux semaines du régime LF (Figure 3). Par contre, une analyse plus poussée a révélé que la perte de poids causée par le régime LC était principalement sous forme de masse maigre (protéines, eau, glycogène), tandis que ce régime n’a pas eu d’impact significatif sur la perte de graisse durant cette période.  À l’inverse, le régime LF n’a pas d’effet sur cette masse maigre, mais cause cependant une diminution significative de la masse graisseuse, aux environs de 1 kg après deux semaines.  Autrement dit, seul le régime LF a causé une perte de gras corporel au cours de la période d’étude, ce qui suggère fortement que la diminution de l’apport calorique rendue possible par ce type d’alimentation peut faciliter le maintien d’un poids corporel stable et pourrait même favoriser la perte de poids chez les personnes en surpoids.

Figure 3.  Comparaison des variations du poids corporel (haut), de la masse maigre (centre) et de la masse grasse (bas) provoquées par les régimes faibles en glucides ou en lipides.  Tiré de Hall et coll. (2021).

Facteurs de risque cardiovasculaire

En plus de favoriser un plus faible apport calorique et la perte de masse adipeuse, le régime LF semble également supérieur au régime LC quant à son impact sur plusieurs facteurs de risque cardiovasculaire (Tableau 1):

Cholestérol. Il est bien établi que les taux de cholestérol-LDL sont augmentés en réponse à un apport élevé en gras saturés (voir notre article sur la question). Il n’est donc pas surprenant que le régime LF, qui ne contient que 2 % de l’ensemble des calories sous forme de gras saturés, provoque une diminution significative du cholestérol, autant en termes de cholestérol total que de cholestérol-LDL. À première vue, le régime LC riche en gras (contenant 30 % de l’apport calorique quotidien sous forme de gras saturés) ne semble pas avoir d’effet majeur sur le cholestérol-LDL; il faut cependant noter que ce régime modifie de façon très importante la répartition des particules de cholestérol-LDL, avec notamment une hausse significative des particules LDL petites et denses.  Plusieurs études ont rapporté que ces petites particules LDL denses s’infiltrent plus facilement  dans les parois des artères et semblent également s’oxyder plus facilement, deux événements clés dans le développement et la progression de l’athérosclérose.   En somme, deux semaines à peine d’un régime LC riche en gras ont été suffisantes pour modifier significativement (et négativement) le profil athérogénique des participants, ce qui peut soulever des doutes sur les effets à long terme de ce type d’alimentation sur la santé cardiovasculaire.

Tableau 1. Variations de certains facteurs de risque de maladies cardiovasculaires suite à une alimentation pauvre en glucides ou pauvre en gras. Tiré de Hall et coll. (2021).

Acides aminés à chaine latérale. Plusieurs études récentes ont montré une association très nette entre les taux sanguins d’acides aminés à chaine latérale (leucine, isoleucine et valine) et une augmentation du risque de syndrome métabolique et de diabète de type 2, deux très importants facteurs de risque de maladies cardiovasculaires  (voir notre article à ce sujet).  En ce sens, il est fort intéressant de noter que les taux de ces acides aminés sont presque deux fois plus élevés suite à deux semaines de régime LC comparativement au régime LF, ce qui suggère un effet positif d’une alimentation riche en plantes et pauvre en gras dans la prévention de ces désordres.

Inflammation.  L’inflammation chronique participe activement à la formation et à la progression des plaques qui se forment sur la paroi des artères et qui peuvent mener à l’apparition d’accidents cardiovasculaires comme l’infarctus du myocarde et les AVC.  En clinique, ce degré d’inflammation est souvent déterminé en mesurant les taux de la protéine C réactive haute sensibilité (hsCRP), une protéine fabriquée par le foie et relâchée dans le sang en réponse à des conditions inflammatoires. Comme le montre le Tableau 1, le régime LF faible en gras diminue significativement les taux de ce marqueur inflammatoire, un autre effet positif qui milite en faveur d’une alimentation riche en végétaux pour la prévention des maladies cardiovasculaires.

En plus de ces données de laboratoire, les chercheurs ont noté que les participants qui s’étaient nourris avec le régime LF présentaient une fréquence cardiaque plus lente (73 vs 77 battements/min) ainsi qu’une pression artérielle plus faible (112/67 vs 116/69 mm Hg) qu’observées suite régime LC.  Dans ce dernier cas, cette différence pourrait être liée, au moins en partie, à la consommation beaucoup plus élevée de sodium dans le régime LC comparativement au régime LF (5938 vs 3725 mg/jour).

L’ensemble de ces résultats confirme la supériorité d’une alimentation principalement composée de végétaux sur l’ensemble des paramètres impliqués dans la santé cardiovasculaire, que ce soit en termes du profil lipidique, de l’inflammation chronique et du contrôle adéquat de l’apport calorique nécessaire au maintien du poids corporel.

 

Un nouveau métabolite du microbiote lié aux maladies cardiovasculaires

Un nouveau métabolite du microbiote lié aux maladies cardiovasculaires

EN BREF

  • Un criblage métabolomique a permis d’identifier un nouveau métabolite associé aux maladies cardiovasculaires dans le sang de personnes atteintes de diabète de type 2.
  • Ce métabolite, la phénylacétylglutamine (PAGln), est produit par le microbiote intestinal et par le foie, à partir de l’acide aminé phénylalanine provenant des protéines alimentaires.
  • Dans le sang, le PAGln se lie à des récepteurs adrénergiques, exprimés à la surface de la membrane cellulaire des plaquettes, ce qui a pour résultat de les rendre hyper-réactives.
  • Un médicament bêta bloquant couramment utilisé en clinique (Carvedilol) bloque l’effet prothrombotique du PAGln.

Un groupe de recherche de la Cleveland Clinic aux États-Unis a récemment identifié un nouveau métabolite du microbiote qui est lié cliniquement et par son mécanisme à des maladies cardiovasculaires (MCV). Cette découverte a été rendue possible par l’utilisation d’une approche métabolomique (c.-à-d. l’étude des métabolites dans un organisme ou tissu donné), une méthode puissante et non biaisée qui avait permis, entre autres, d’identifier l’oxyde de triméthylamine (TMAO) comme un métabolite favorisant l’athérosclérose et les acides aminés à chaîne latérale ramifiée (BCAA) comme des marqueurs de l’obésité.

Le nouveau criblage métabolomique a permis d’identifier dans le sang, chez des personnes atteintes de diabète de type 2, plusieurs composés associés à l’un ou plusieurs de ces critères : 1) événement cardiovasculaire majeur (ÉCM : infarctus du myocarde, AVC ou mort) dans les 3 dernières années ; 2) niveau élevé de diabète de type 2 ; 3) une faible corrélation avec les indices de contrôle glycémique. Parmi ces composés, cinq étaient déjà connus:  deux qui sont dérivés du microbiote intestinal (TMAO et triméthyllysine) et trois autres qui sont des diacyl-glycérophospholipides. Parmi les composés inconnus, celui qui était le plus fortement associé avec des ÉCM a été identifié par spectrométrie de masse comme la phénylacétylglutamine (PAGln).

En résumé voici comment le PAGln est généré (voir la partie gauche de la figure 1) :

  • L’acide aminé phénylalanine provenant des protéines alimentaires (d’origine animale et végétale) est majoritairement absorbé au niveau du petit intestin, mais une portion qui n’est pas absorbée aboutit au gros intestin.
  • Dans le gros intestin, la phénylalanine est d’abord transformée en acide phénylpyruvique par le microbiote intestinal, puis en acide phénylacétique par certaines bactéries, particulièrement celles exprimant le gène porA.
  • L’acide phénylacétique est absorbé et acheminé au foie via la veine porte où il est rapidement métabolisé en phénylacétylglutamine ou PAGln.


Figure. Résumé schématique de l’implication du PAGln dans l’augmentation de l’agrégation plaquettaire, l’athérothrombose et les événements cardiovasculaires majeurs. Traduit de Nemet et coll., 2020.

Les chercheurs ont montré que le PAGln augmente les effets liés à l’activation plaquettaire et le potentiel de thrombose dans le sang complet, sur des plaquettes isolées et dans des modèles animaux de lésions artérielles.

Le PAGln se lie à des sites cellulaires de manière saturable, ce qui suggère une liaison spécifique à des récepteurs membranaires. Les chercheurs ont ensuite démontré que le PAGln se lie à des récepteurs adrénergiques liés aux protéines G, exprimés à la surface de la membrane cellulaire des plaquettes. La stimulation de ces récepteurs cause une hyperstimulation des plaquettes qui deviennent alors hyper-réactives et accélèrent l’agrégation plaquettaire et le processus de thrombose.

Finalement, en utilisant un modèle de thrombus chez la souris, il a été démontré qu’un médicament bêta bloquant couramment utilisé en clinique (Carvedilol) bloque l’effet prothrombotique du PAGln. Ce résultat est particulièrement intéressant parce qu’il suggère que les effets bénéfiques des bêta bloquants pourraient être en partie causés par un renversement des effets de niveaux élevés de PAGln. L’identification du PAGln pourrait permettre de développer de nouvelles stratégies ciblées et personnalisées pour le traitement de maladies cardiovasculaires.